Cargando…

H-FABP: A new biomarker to differentiate between CT-positive and CT-negative patients with mild traumatic brain injury

The majority of patients with mild traumatic brain injury (mTBI) will have normal Glasgow coma scale (GCS) of 15. Furthermore, only 5%–8% of them will be CT-positive for an mTBI. Having a useful biomarker would help clinicians evaluate a patient’s risk of developing intracranial lesions. The S100B p...

Descripción completa

Detalles Bibliográficos
Autores principales: Lagerstedt, Linnéa, Egea-Guerrero, Juan José, Bustamante, Alejandro, Montaner, Joan, Rodríguez-Rodríguez, Ana, El Rahal, Amir, Turck, Natacha, Quintana, Manuel, García-Armengol, Roser, Prica, Carmen Melinda, Andereggen, Elisabeth, Rinaldi, Lara, Sarrafzadeh, Asita, Schaller, Karl, Sanchez, Jean-Charles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395174/
https://www.ncbi.nlm.nih.gov/pubmed/28419114
http://dx.doi.org/10.1371/journal.pone.0175572
Descripción
Sumario:The majority of patients with mild traumatic brain injury (mTBI) will have normal Glasgow coma scale (GCS) of 15. Furthermore, only 5%–8% of them will be CT-positive for an mTBI. Having a useful biomarker would help clinicians evaluate a patient’s risk of developing intracranial lesions. The S100B protein is currently the most studied and promising biomarker for this purpose. Heart fatty-acid binding protein (H-FABP) has been highlighted in brain injury models and investigated as a biomarker for stroke and severe TBI, for example. Here, we evaluate the performances of S100B and H-FABP for differentiating between CT-positive and CT-negative patients. A total of 261 patients with a GCS score of 15 and at least one clinical symptom of mTBI were recruited at three different European sites. Blood samples from 172 of them were collected ≤ 6 h after trauma. Patients underwent a CT scan and were dichotomised into CT-positive and CT-negative groups for statistical analyses. H-FABP and S100B levels were measured using commercial kits, and their capacities to detect all CT-positive scans were evaluated, with sensitivity set to 100%. For patients recruited ≤ 6 h after trauma, the CT-positive group demonstrated significantly higher levels of both H-FABP (p = 0.004) and S100B (p = 0.003) than the CT-negative group. At 100% sensitivity, specificity reached 6% (95% CI 2.8–10.7) for S100B and 29% (95% CI 21.4–37.1) for H-FABP. Similar results were obtained when including all the patients recruited, i.e. hospital arrival within 24 h of trauma onset. H-FABP out-performed S100B and thus seems to be an interesting protein for detecting all CT-positive mTBI patients with a GCS score of 15 and at least one clinical symptom.