Cargando…
Empirical Scenarios of Fake Data Analysis: The Sample Generation by Replacement (SGR) Approach
Many self-report measures of attitudes, beliefs, personality, and pathology include items whose responses can be easily manipulated or distorted, as an example in order to give a positive impression to others, to obtain financial compensation, to avoid being charged with a crime, to get a job, or el...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395608/ https://www.ncbi.nlm.nih.gov/pubmed/28469584 http://dx.doi.org/10.3389/fpsyg.2017.00482 |
_version_ | 1783229899013619712 |
---|---|
author | Pastore, Massimiliano Nucci, Massimo Bobbio, Andrea Lombardi, Luigi |
author_facet | Pastore, Massimiliano Nucci, Massimo Bobbio, Andrea Lombardi, Luigi |
author_sort | Pastore, Massimiliano |
collection | PubMed |
description | Many self-report measures of attitudes, beliefs, personality, and pathology include items whose responses can be easily manipulated or distorted, as an example in order to give a positive impression to others, to obtain financial compensation, to avoid being charged with a crime, to get a job, or else. This fact confronts both researchers and practitioners with the crucial problem of biases yielded by the usage of standard statistical models. The current paper presents three empirical applications to the issue of faking of a recent probabilistic perturbation procedure called Sample Generation by Replacement (SGR; Lombardi and Pastore, 2012). With the intent to study the behavior of some statistics under fake perturbation and data reconstruction processes, ad-hoc faking scenarios were implemented and tested. Overall, results proved that SGR could be successfully applied both in the case of research designs traditionally proposed in order to deal with faking (e.g., use of fake-detecting scales, experimentally induced faking, or contrasting applicants vs. incumbents), and in the case of ecological research settings, where no information as regards faking could be collected by the researcher or the practitioner. Implications and limitations are presented and discussed. |
format | Online Article Text |
id | pubmed-5395608 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-53956082017-05-03 Empirical Scenarios of Fake Data Analysis: The Sample Generation by Replacement (SGR) Approach Pastore, Massimiliano Nucci, Massimo Bobbio, Andrea Lombardi, Luigi Front Psychol Psychology Many self-report measures of attitudes, beliefs, personality, and pathology include items whose responses can be easily manipulated or distorted, as an example in order to give a positive impression to others, to obtain financial compensation, to avoid being charged with a crime, to get a job, or else. This fact confronts both researchers and practitioners with the crucial problem of biases yielded by the usage of standard statistical models. The current paper presents three empirical applications to the issue of faking of a recent probabilistic perturbation procedure called Sample Generation by Replacement (SGR; Lombardi and Pastore, 2012). With the intent to study the behavior of some statistics under fake perturbation and data reconstruction processes, ad-hoc faking scenarios were implemented and tested. Overall, results proved that SGR could be successfully applied both in the case of research designs traditionally proposed in order to deal with faking (e.g., use of fake-detecting scales, experimentally induced faking, or contrasting applicants vs. incumbents), and in the case of ecological research settings, where no information as regards faking could be collected by the researcher or the practitioner. Implications and limitations are presented and discussed. Frontiers Media S.A. 2017-04-19 /pmc/articles/PMC5395608/ /pubmed/28469584 http://dx.doi.org/10.3389/fpsyg.2017.00482 Text en Copyright © 2017 Pastore, Nucci, Bobbio and Lombardi. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Psychology Pastore, Massimiliano Nucci, Massimo Bobbio, Andrea Lombardi, Luigi Empirical Scenarios of Fake Data Analysis: The Sample Generation by Replacement (SGR) Approach |
title | Empirical Scenarios of Fake Data Analysis: The Sample Generation by Replacement (SGR) Approach |
title_full | Empirical Scenarios of Fake Data Analysis: The Sample Generation by Replacement (SGR) Approach |
title_fullStr | Empirical Scenarios of Fake Data Analysis: The Sample Generation by Replacement (SGR) Approach |
title_full_unstemmed | Empirical Scenarios of Fake Data Analysis: The Sample Generation by Replacement (SGR) Approach |
title_short | Empirical Scenarios of Fake Data Analysis: The Sample Generation by Replacement (SGR) Approach |
title_sort | empirical scenarios of fake data analysis: the sample generation by replacement (sgr) approach |
topic | Psychology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395608/ https://www.ncbi.nlm.nih.gov/pubmed/28469584 http://dx.doi.org/10.3389/fpsyg.2017.00482 |
work_keys_str_mv | AT pastoremassimiliano empiricalscenariosoffakedataanalysisthesamplegenerationbyreplacementsgrapproach AT nuccimassimo empiricalscenariosoffakedataanalysisthesamplegenerationbyreplacementsgrapproach AT bobbioandrea empiricalscenariosoffakedataanalysisthesamplegenerationbyreplacementsgrapproach AT lombardiluigi empiricalscenariosoffakedataanalysisthesamplegenerationbyreplacementsgrapproach |