Cargando…
Clustering by fast search and merge of local density peaks for gene expression microarray data
Clustering is an unsupervised approach to classify elements based on their similarity, and it is used to find the intrinsic patterns of data. There are enormous applications of clustering in bioinformatics, pattern recognition, and astronomy. This paper presents a clustering approach based on the id...
Autores principales: | Mehmood, Rashid, El-Ashram, Saeed, Bie, Rongfang, Dawood, Hussain, Kos, Anton |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395818/ https://www.ncbi.nlm.nih.gov/pubmed/28422088 http://dx.doi.org/10.1038/srep45602 |
Ejemplares similares
-
Merged consensus clustering to assess and improve class discovery with microarray data
por: Simpson, T Ian, et al.
Publicado: (2010) -
Automatic Clustering of Flow Cytometry Data with Density-Based Merging
por: Walther, Guenther, et al.
Publicado: (2009) -
Quantum Density Peak Clustering Algorithm
por: Wu, Zhihao, et al.
Publicado: (2022) -
Merging processes in galaxy clusters
por: Feretti, L, et al.
Publicado: (2004) -
An Improved Density Peak Clustering Algorithm for Multi-Density Data
por: Yin, Lifeng, et al.
Publicado: (2022)