Cargando…
Towards automatic pulmonary nodule management in lung cancer screening with deep learning
The introduction of lung cancer screening programs will produce an unprecedented amount of chest CT scans in the near future, which radiologists will have to read in order to decide on a patient follow-up strategy. According to the current guidelines, the workup of screen-detected nodules strongly r...
Autores principales: | Ciompi, Francesco, Chung, Kaman, van Riel, Sarah J., Setio, Arnaud Arindra Adiyoso, Gerke, Paul K., Jacobs, Colin, Th. Scholten, Ernst, Schaefer-Prokop, Cornelia, Wille, Mathilde M. W., Marchianò, Alfonso, Pastorino, Ugo, Prokop, Mathias, van Ginneken, Bram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395959/ https://www.ncbi.nlm.nih.gov/pubmed/28422152 http://dx.doi.org/10.1038/srep46479 |
Ejemplares similares
-
Corrigendum: Towards automatic pulmonary nodule management in lung cancer screening with deep learning
por: Ciompi, F., et al.
Publicado: (2017) -
Malignancy risk estimation of screen-detected nodules at baseline CT: comparison of the PanCan model, Lung-RADS and NCCN guidelines
por: van Riel, Sarah J., et al.
Publicado: (2017) -
Visual discrimination of screen-detected persistent from transient subsolid nodules: An observer study
por: Chung, Kaman, et al.
Publicado: (2018) -
Automatic segmentation of the solid core and enclosed vessels in subsolid pulmonary nodules
por: Charbonnier, Jean-Paul, et al.
Publicado: (2018) -
Malignancy estimation of Lung-RADS criteria for subsolid nodules on CT: accuracy of low and high risk spectrum when using NLST nodules
por: Chung, Kaman, et al.
Publicado: (2017)