Cargando…
Comparison of Differentiation of Induced Pluripotent Stem Cells and Bone-Marrow Mesenchymal Stem Cells to Osteoblast: Osteogenesis versus Pluripotency
BACKGROUND: Derivation of induced pluripotent stem cells (iPSCs) from various adult somatic cells through over-expression of pluripotent genes could allow for the unlimited autologous supply in regenerative medicine. On the other hand the generation of various progenitors from bone-marrow mesenchyma...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Avicenna Organ Transplantation Institute
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5396057/ https://www.ncbi.nlm.nih.gov/pubmed/28435641 |
_version_ | 1783229998312718336 |
---|---|
author | Foroutan, T. |
author_facet | Foroutan, T. |
author_sort | Foroutan, T. |
collection | PubMed |
description | BACKGROUND: Derivation of induced pluripotent stem cells (iPSCs) from various adult somatic cells through over-expression of pluripotent genes could allow for the unlimited autologous supply in regenerative medicine. On the other hand the generation of various progenitors from bone-marrow mesenchymal stem cells (MSCs) is justly well established. OBJECTIVE: In this study we compared the expression level of pluripotent genes oct4, c-myc, sox-2, nanog, klf4 and lin28 in iPSCs and MSCs derived from bone marrow. Also the potential of osteogenesis of iPSCs and bone-marrow MSCs were compared. METHODS: We analyzed the expression level of oct4, sox-2, c-myc, klf4, nanog and lin28 genes in human MSCs derived from iPSCs and MSCs by cell culture and real-time PCR. Also the expression level of osteocalcin and osteopontin in both groups were evaluated. RESULTS: We found that the expression of osteogenic markers in differentiated iPSCs to osteoblast were higher than bone-marrow MSCs. While the levels of pluripotency genes oct4, c-myc and klf4 in iPSCs were significantly (p<0.05) higher than bone-marrow MSCs, MSCs showed higher expression of sox-2, nanog and lin28 compared with iPSCs (p=NS). CONCLUSION: It seems that the higher expression of osteopontin and osteocalcin in MSCs compared to iPSCs may be due to other factors (besides pluripotency) required for differentiation of stem cells to osteoblast. |
format | Online Article Text |
id | pubmed-5396057 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Avicenna Organ Transplantation Institute |
record_format | MEDLINE/PubMed |
spelling | pubmed-53960572017-04-21 Comparison of Differentiation of Induced Pluripotent Stem Cells and Bone-Marrow Mesenchymal Stem Cells to Osteoblast: Osteogenesis versus Pluripotency Foroutan, T. Int J Organ Transplant Med Original Article BACKGROUND: Derivation of induced pluripotent stem cells (iPSCs) from various adult somatic cells through over-expression of pluripotent genes could allow for the unlimited autologous supply in regenerative medicine. On the other hand the generation of various progenitors from bone-marrow mesenchymal stem cells (MSCs) is justly well established. OBJECTIVE: In this study we compared the expression level of pluripotent genes oct4, c-myc, sox-2, nanog, klf4 and lin28 in iPSCs and MSCs derived from bone marrow. Also the potential of osteogenesis of iPSCs and bone-marrow MSCs were compared. METHODS: We analyzed the expression level of oct4, sox-2, c-myc, klf4, nanog and lin28 genes in human MSCs derived from iPSCs and MSCs by cell culture and real-time PCR. Also the expression level of osteocalcin and osteopontin in both groups were evaluated. RESULTS: We found that the expression of osteogenic markers in differentiated iPSCs to osteoblast were higher than bone-marrow MSCs. While the levels of pluripotency genes oct4, c-myc and klf4 in iPSCs were significantly (p<0.05) higher than bone-marrow MSCs, MSCs showed higher expression of sox-2, nanog and lin28 compared with iPSCs (p=NS). CONCLUSION: It seems that the higher expression of osteopontin and osteocalcin in MSCs compared to iPSCs may be due to other factors (besides pluripotency) required for differentiation of stem cells to osteoblast. Avicenna Organ Transplantation Institute 2016 2016-05-01 /pmc/articles/PMC5396057/ /pubmed/28435641 Text en This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Foroutan, T. Comparison of Differentiation of Induced Pluripotent Stem Cells and Bone-Marrow Mesenchymal Stem Cells to Osteoblast: Osteogenesis versus Pluripotency |
title | Comparison of Differentiation of Induced Pluripotent Stem Cells and Bone-Marrow Mesenchymal Stem Cells to Osteoblast: Osteogenesis versus Pluripotency |
title_full | Comparison of Differentiation of Induced Pluripotent Stem Cells and Bone-Marrow Mesenchymal Stem Cells to Osteoblast: Osteogenesis versus Pluripotency |
title_fullStr | Comparison of Differentiation of Induced Pluripotent Stem Cells and Bone-Marrow Mesenchymal Stem Cells to Osteoblast: Osteogenesis versus Pluripotency |
title_full_unstemmed | Comparison of Differentiation of Induced Pluripotent Stem Cells and Bone-Marrow Mesenchymal Stem Cells to Osteoblast: Osteogenesis versus Pluripotency |
title_short | Comparison of Differentiation of Induced Pluripotent Stem Cells and Bone-Marrow Mesenchymal Stem Cells to Osteoblast: Osteogenesis versus Pluripotency |
title_sort | comparison of differentiation of induced pluripotent stem cells and bone-marrow mesenchymal stem cells to osteoblast: osteogenesis versus pluripotency |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5396057/ https://www.ncbi.nlm.nih.gov/pubmed/28435641 |
work_keys_str_mv | AT foroutant comparisonofdifferentiationofinducedpluripotentstemcellsandbonemarrowmesenchymalstemcellstoosteoblastosteogenesisversuspluripotency |