Cargando…
Bladder cancer: Micro RNAs as biomolecules for prognostication and surveillance
INTRODUCTION: Bladder cancer (BC) has varied clinical behavior in terms of recurrence and progression. Current pathological characteristics are insufficient to prognosticate the outcome of a given treatment. Cellular metabolic regulatory molecules, such as micro RNA (miRNA), could be a potential bio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5396400/ https://www.ncbi.nlm.nih.gov/pubmed/28469300 http://dx.doi.org/10.4103/0970-1591.203412 |
Sumario: | INTRODUCTION: Bladder cancer (BC) has varied clinical behavior in terms of recurrence and progression. Current pathological characteristics are insufficient to prognosticate the outcome of a given treatment. Cellular metabolic regulatory molecules, such as micro RNA (miRNA), could be a potential biomarker to prognosticate the treatment outcomes. MATERIALS AND METHODS: PubMed and Google Scholar databases were searched for publications from 1990 to 2016, related to miRNA biogenesis, its function, and role in the pathogenesis of bladder as well as other cancers. Articles were searched using MeSH terms micrornas, micrornas AND neoplasm, and micrornas AND urinary bladder neoplasm. Out of the 108 publications reviewed 75 references were selected based on the clinical relevance. Articles were reviewed to assess the role of miRNA in various cancers and those in BC as a diagnostic or therapeutic tool. RESULTS: More than 35 miRNAs were found to be associated with different pathways of cellular dedifferentiation, proliferation, and progression of BC as well as other cancers. A normal looking mucosa may show molecular changes preceding phenotypic changes in the form of varied expression of miR-129, miR-200a, and miR-205. miR-214, miR-99a, and miR-125b have been shown to be potential urinary biomarkers of BC. miRNAs could act as a repressor for protein molecule functioning or activator of different pathways to be used as a therapeutic target too. CONCLUSIONS: Despite certain limitations, such as instability, rapid plasma clearance, and targeting antagonist proteins of cellular metabolic pathways, miRNAs have potential to be studied as a biomarker or a therapeutic target for BC. |
---|