Cargando…

Oral Administration of Tualang and Manuka Honeys Modulates Breast Cancer Progression in Sprague-Dawley Rats Model

Breast cancer has been recognized as the leading cause of death in women worldwide. Research has shown the importance of complementary and alternative therapies in cancer. In this study, we investigated the antitumoural therapeutic effects of Malaysian Tualang honey (TH) and Australian/New Zealand M...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmed, Sarfraz, Sulaiman, Siti Amrah, Othman, Nor Hayati
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5396450/
https://www.ncbi.nlm.nih.gov/pubmed/28479926
http://dx.doi.org/10.1155/2017/5904361
Descripción
Sumario:Breast cancer has been recognized as the leading cause of death in women worldwide. Research has shown the importance of complementary and alternative therapies in cancer. In this study, we investigated the antitumoural therapeutic effects of Malaysian Tualang honey (TH) and Australian/New Zealand Manuka honey (MH) against breast cancer in rats. Thirty syngeneic virgin female Sprague-Dawley (SD) rats were induced by the carcinogen 1-methyl-1-nitrosourea (MNU) 80 mg/kg. The treatment started when first palpable tumour reached 10–12 mm in size by dividing rats into following groups: Group 0 (negative control); Group 1 (positive control); and Groups 2 and 3 which received 1.0 g/kg body weight/day of TH and MH, respectively, for 120 days. The data demonstrate that cancer masses in TH and MH treated groups showed a lower median tumour size, weight, and multiplicity compared with the nontreated positive control (p < 0.05). Treatment also showed a dramatic slower growth rate (up to 70.82%) compared with the nontreated control (0%) (p < 0.05). The antitumoural effect was mediated through modulation of tumour growth, tumour grading, estrogenic activity, and haematological parameters. Our findings demonstrate that systemic administration of TH and MH increases the susceptibility of expression of proapoptotic proteins (Apaf-1, Caspase-9, IFN-γ, IFNGR1, and p53) and decreases the expression of antiapoptotic proteins (TNF-α, COX-2, and Bcl-xL 1) in its mechanism of action. This highlights a potential novel role for TH and MH in alleviating breast cancer.