Cargando…

Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1

Using RNA sequencing (RNA-Seq), we compared the expression patterns of circular RNAs in proliferating (early-passage) and senescent (late-passage) human diploid WI-38 fibroblasts. Among the differentially expressed senescence-associated circRNAs (which we termed ‘SAC-RNAs’), we identified CircPVT1,...

Descripción completa

Detalles Bibliográficos
Autores principales: Panda, Amaresh C., Grammatikakis, Ioannis, Kim, Kyoung Mi, De, Supriyo, Martindale, Jennifer L., Munk, Rachel, Yang, Xiaoling, Abdelmohsen, Kotb, Gorospe, Myriam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
RNA
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397146/
https://www.ncbi.nlm.nih.gov/pubmed/27928058
http://dx.doi.org/10.1093/nar/gkw1201
Descripción
Sumario:Using RNA sequencing (RNA-Seq), we compared the expression patterns of circular RNAs in proliferating (early-passage) and senescent (late-passage) human diploid WI-38 fibroblasts. Among the differentially expressed senescence-associated circRNAs (which we termed ‘SAC-RNAs’), we identified CircPVT1, generated by circularization of an exon of the PVT1 gene, as a circular RNA showing markedly reduced levels in senescent fibroblasts. Reducing CircPVT1 levels in proliferating fibroblasts triggered senescence, as determined by a rise in senescence-associated β-galactosidase activity, higher abundance of CDKN1A/P21 and TP53, and reduced cell proliferation. Although several microRNAs were predicted to bind CircPVT1, only let-7 was found enriched after pulldown of endogenous CircPVT1, suggesting that CircPVT1 might selectively modulate let-7 activity and hence expression of let-7-regulated mRNAs. Reporter analysis revealed that CircPVT1 decreased the cellular pool of available let-7, and antagonizing endogenous let-7 triggered cell proliferation. Importantly, silencing CircPVT1 promoted cell senescence and reversed the proliferative phenotype observed after let-7 function was impaired. Consequently, the levels of several proliferative proteins that prevent senescence, such as IGF2BP1, KRAS and HMGA2, encoded by let-7 target mRNAs, were reduced by silencing CircPVT1. Our findings indicate that the SAC-RNA CircPVT1, elevated in dividing cells and reduced in senescent cells, sequesters let-7 to enable a proliferative phenotype.