Cargando…

Efficient DNA binding of NF-κB requires the chaperone-like function of NPM1

NPM1/nucleophosmin is frequently overexpressed in various tumors, although the oncogenic role of NPM1 remains unclear. Here we revealed the link between NPM1 and nuclear factor-κB (NF-κB), a master regulator of inflammation. We found that NPM1 knockdown decreased NF-κB-mediated transcription of sele...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Jianhuang, Kato, Mitsuyasu, Nagata, Kyosuke, Okuwaki, Mitsuru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397172/
https://www.ncbi.nlm.nih.gov/pubmed/28003476
http://dx.doi.org/10.1093/nar/gkw1285
Descripción
Sumario:NPM1/nucleophosmin is frequently overexpressed in various tumors, although the oncogenic role of NPM1 remains unclear. Here we revealed the link between NPM1 and nuclear factor-κB (NF-κB), a master regulator of inflammation. We found that NPM1 knockdown decreased NF-κB-mediated transcription of selected target genes by decreasing the recruitment of NF-κB p65 to the gene promoters. NPM1 is directly associated with the DNA binding domain of p65 to enhance its DNA binding activity without being a part of the DNA–NF-κB complex. This result suggests that NF-κB requires the chaperone-like function of NPM1 for DNA binding. Furthermore, we demonstrated that NPM1 was required for efficient inflammatory gene expression induced by tumor necrosis factor alpha (TNF-α) and lipopolysaccharide in fibroblasts and macrophages. The NF-κB-mediated invasion of breast cancer cells was significantly decreased by NPM1 knockdown. Our study suggests a novel mechanistic insight into the NF-κB-mediated transcription and an oncogenic role of NPM1 in both tumor cells and the tumor micro-environment through the regulation of NF-κB.