Cargando…

Effects of Acute Exercise on Circulating Soluble Form of the Urokinase Receptor in Patients With Major Depressive Disorder

Inflammation has been proposed to play a role in the generation of depressive symptoms. Previously, we demonstrated that patients with major depressive disorder (MDD) have increased plasma levels of the soluble form of the urokinase receptor (suPAR), a marker for low-grade inflammation. The aim of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gustafsson, Anna, Ventorp, Filip, Wisén, Anita GM, Ohlsson, Lars, Ljunggren, Lennart, Westrin, Åsa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397280/
https://www.ncbi.nlm.nih.gov/pubmed/28469403
http://dx.doi.org/10.1177/1177271917704193
Descripción
Sumario:Inflammation has been proposed to play a role in the generation of depressive symptoms. Previously, we demonstrated that patients with major depressive disorder (MDD) have increased plasma levels of the soluble form of the urokinase receptor (suPAR), a marker for low-grade inflammation. The aim of this study was to test the hypothesis that acute exercise would induce inflammatory response characterized by increased suPAR and elucidate whether patients with MDD display altered levels of suPAR in response to acute exercise. A total of 17 patients with MDD and 17 controls were subjected to an exercise challenge. Plasma suPAR (P-suPAR) was analyzed before, during, and after exercise. There was a significantly higher baseline P-suPAR in the patients with MDD, and the dynamic changes of P-suPAR during the exercise were significantly lower in the patients with MDD, compared with the controls. This study supports the hypothesis that an activation of systemic inflammatory processes, measured as elevated P-suPAR, is involved in the pathophysiology of depression. The study concludes that P-suPAR is influenced by acute exercise, most likely due to release from activated neutrophils.