Cargando…
Effect of Fatty Acid Unsaturation on Phytosteryl Ester Degradation
This study examined the thermo-oxidative degradation of stigmasterol fatty acids esters. Stigmasterol stearate, oleate, linoleate and linolenate were synthesized by chemical esterification and their purity evaluated by (1)H-NMR and GC–MS. The degradation of stigmasterol esters was examined after hea...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397657/ https://www.ncbi.nlm.nih.gov/pubmed/28479606 http://dx.doi.org/10.1007/s11746-017-2979-x |
_version_ | 1783230308619911168 |
---|---|
author | Raczyk, Marianna Kmiecik, Dominik Przybylski, Roman Rudzińska, Magdalena |
author_facet | Raczyk, Marianna Kmiecik, Dominik Przybylski, Roman Rudzińska, Magdalena |
author_sort | Raczyk, Marianna |
collection | PubMed |
description | This study examined the thermo-oxidative degradation of stigmasterol fatty acids esters. Stigmasterol stearate, oleate, linoleate and linolenate were synthesized by chemical esterification and their purity evaluated by (1)H-NMR and GC–MS. The degradation of stigmasterol esters was examined after heating them at 60 and 180 °C for 1, 2, 4, 8 and 12 h. It was established that stigmasterol esters were prone to thermo-oxidative degradation, with time and temperature affecting the degree of degradation. The unsaturation of fatty acids affected the rate of stigmasteryl ester degradation. The kinetics of StS and StO degradation were similar and the additional double bonds in StL and StLn resulted in their faster decomposition. The esters degraded faster at 180 than at 60 °C. The sterol and fatty acid molecules degraded at different rates, such that the fatty acid moiety deteriorated faster than the sterol at both temperatures, independent of the time of heating and the level of unsaturation. |
format | Online Article Text |
id | pubmed-5397657 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-53976572017-05-05 Effect of Fatty Acid Unsaturation on Phytosteryl Ester Degradation Raczyk, Marianna Kmiecik, Dominik Przybylski, Roman Rudzińska, Magdalena J Am Oil Chem Soc Original Paper This study examined the thermo-oxidative degradation of stigmasterol fatty acids esters. Stigmasterol stearate, oleate, linoleate and linolenate were synthesized by chemical esterification and their purity evaluated by (1)H-NMR and GC–MS. The degradation of stigmasterol esters was examined after heating them at 60 and 180 °C for 1, 2, 4, 8 and 12 h. It was established that stigmasterol esters were prone to thermo-oxidative degradation, with time and temperature affecting the degree of degradation. The unsaturation of fatty acids affected the rate of stigmasteryl ester degradation. The kinetics of StS and StO degradation were similar and the additional double bonds in StL and StLn resulted in their faster decomposition. The esters degraded faster at 180 than at 60 °C. The sterol and fatty acid molecules degraded at different rates, such that the fatty acid moiety deteriorated faster than the sterol at both temperatures, independent of the time of heating and the level of unsaturation. Springer Berlin Heidelberg 2017-04-01 2017 /pmc/articles/PMC5397657/ /pubmed/28479606 http://dx.doi.org/10.1007/s11746-017-2979-x Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Paper Raczyk, Marianna Kmiecik, Dominik Przybylski, Roman Rudzińska, Magdalena Effect of Fatty Acid Unsaturation on Phytosteryl Ester Degradation |
title | Effect of Fatty Acid Unsaturation on Phytosteryl Ester Degradation |
title_full | Effect of Fatty Acid Unsaturation on Phytosteryl Ester Degradation |
title_fullStr | Effect of Fatty Acid Unsaturation on Phytosteryl Ester Degradation |
title_full_unstemmed | Effect of Fatty Acid Unsaturation on Phytosteryl Ester Degradation |
title_short | Effect of Fatty Acid Unsaturation on Phytosteryl Ester Degradation |
title_sort | effect of fatty acid unsaturation on phytosteryl ester degradation |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397657/ https://www.ncbi.nlm.nih.gov/pubmed/28479606 http://dx.doi.org/10.1007/s11746-017-2979-x |
work_keys_str_mv | AT raczykmarianna effectoffattyacidunsaturationonphytosterylesterdegradation AT kmiecikdominik effectoffattyacidunsaturationonphytosterylesterdegradation AT przybylskiroman effectoffattyacidunsaturationonphytosterylesterdegradation AT rudzinskamagdalena effectoffattyacidunsaturationonphytosterylesterdegradation |