Cargando…

Differences between native and prosthetic knees in terms of cross-sectional morphology of the femoral trochlea: a study based on three-dimensional models and virtual total knee arthroplasty

BACKGROUND: The cross-sectional morphology of the prosthetic knee is crucial to understanding patellar motion and quadriceps strength after total knee arthroplasty. However, few comparative evaluations of the cross-sectional morphology of the femoral trochlea have been performed in the native knee a...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Zhe, Chen, Shichang, Yan, Mengning, Yue, Bing, Wang, You
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397712/
https://www.ncbi.nlm.nih.gov/pubmed/28427385
http://dx.doi.org/10.1186/s12891-017-1529-x
_version_ 1783230318676803584
author Du, Zhe
Chen, Shichang
Yan, Mengning
Yue, Bing
Wang, You
author_facet Du, Zhe
Chen, Shichang
Yan, Mengning
Yue, Bing
Wang, You
author_sort Du, Zhe
collection PubMed
description BACKGROUND: The cross-sectional morphology of the prosthetic knee is crucial to understanding patellar motion and quadriceps strength after total knee arthroplasty. However, few comparative evaluations of the cross-sectional morphology of the femoral trochlea have been performed in the native knee and currently available femoral implants, and the relationship between the trochlear anatomy of prosthetic components and post-operative patellofemoral complications remains unclear. We aimed to investigate the differences in cross-sectional morphology of the femoral trochlea between native knees and prosthetic femoral components. METHODS: Virtual total knee arthroplasty was performed, whereby four different femoral components (medial-pivot, Triathlon, NRG and NexGen) were virtually superimposed onto three-dimensional models of 42 healthy femurs. The following morphological parameters were measured in three cross-sections (0, 45 and 90°) of the femoral trochlea: sulcus height, lateral tilt angle, medial tilt angle and sulcus angle. Only statistically significant differences are described further (p < 0.05). RESULTS: In the 0° cross-section, sulcus height was smaller in the native knee than in the Triathlon, NRG and NexGen components; all prosthetic components had smaller lateral tilt angles and larger medial tilt angles. In the 45° cross-section, sulcus height was larger in the native knee than in the medial-pivot, Triathlon and NexGen components; both lateral and medial tilt angles were smaller in the prosthetic components. In the 90° cross-section, sulcus height was smaller in the native knee than in the medial-pivot component; all prosthetic components had a larger lateral tilt angle and smaller medial tilt angle. In all cross-sections, the sulcus angle was smaller in the native knee. CONCLUSIONS: The discrepancy between native and prosthetic trochlear geometries suggests altered knee mechanics after total knee arthroplasty, but further cadaveric, computational or fluoroscopic investigations are necessary to clarify the implications of this observation. Our findings can be used to optimize biomechanical guidelines for total knee arthroplasty (patellar resurfacing or non-resurfacing) in Chinese individuals so as to decrease the risk of patellar lateral dislocation, to maintain stability and to optimize extensor kinematics.
format Online
Article
Text
id pubmed-5397712
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-53977122017-04-20 Differences between native and prosthetic knees in terms of cross-sectional morphology of the femoral trochlea: a study based on three-dimensional models and virtual total knee arthroplasty Du, Zhe Chen, Shichang Yan, Mengning Yue, Bing Wang, You BMC Musculoskelet Disord Research Article BACKGROUND: The cross-sectional morphology of the prosthetic knee is crucial to understanding patellar motion and quadriceps strength after total knee arthroplasty. However, few comparative evaluations of the cross-sectional morphology of the femoral trochlea have been performed in the native knee and currently available femoral implants, and the relationship between the trochlear anatomy of prosthetic components and post-operative patellofemoral complications remains unclear. We aimed to investigate the differences in cross-sectional morphology of the femoral trochlea between native knees and prosthetic femoral components. METHODS: Virtual total knee arthroplasty was performed, whereby four different femoral components (medial-pivot, Triathlon, NRG and NexGen) were virtually superimposed onto three-dimensional models of 42 healthy femurs. The following morphological parameters were measured in three cross-sections (0, 45 and 90°) of the femoral trochlea: sulcus height, lateral tilt angle, medial tilt angle and sulcus angle. Only statistically significant differences are described further (p < 0.05). RESULTS: In the 0° cross-section, sulcus height was smaller in the native knee than in the Triathlon, NRG and NexGen components; all prosthetic components had smaller lateral tilt angles and larger medial tilt angles. In the 45° cross-section, sulcus height was larger in the native knee than in the medial-pivot, Triathlon and NexGen components; both lateral and medial tilt angles were smaller in the prosthetic components. In the 90° cross-section, sulcus height was smaller in the native knee than in the medial-pivot component; all prosthetic components had a larger lateral tilt angle and smaller medial tilt angle. In all cross-sections, the sulcus angle was smaller in the native knee. CONCLUSIONS: The discrepancy between native and prosthetic trochlear geometries suggests altered knee mechanics after total knee arthroplasty, but further cadaveric, computational or fluoroscopic investigations are necessary to clarify the implications of this observation. Our findings can be used to optimize biomechanical guidelines for total knee arthroplasty (patellar resurfacing or non-resurfacing) in Chinese individuals so as to decrease the risk of patellar lateral dislocation, to maintain stability and to optimize extensor kinematics. BioMed Central 2017-04-20 /pmc/articles/PMC5397712/ /pubmed/28427385 http://dx.doi.org/10.1186/s12891-017-1529-x Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Du, Zhe
Chen, Shichang
Yan, Mengning
Yue, Bing
Wang, You
Differences between native and prosthetic knees in terms of cross-sectional morphology of the femoral trochlea: a study based on three-dimensional models and virtual total knee arthroplasty
title Differences between native and prosthetic knees in terms of cross-sectional morphology of the femoral trochlea: a study based on three-dimensional models and virtual total knee arthroplasty
title_full Differences between native and prosthetic knees in terms of cross-sectional morphology of the femoral trochlea: a study based on three-dimensional models and virtual total knee arthroplasty
title_fullStr Differences between native and prosthetic knees in terms of cross-sectional morphology of the femoral trochlea: a study based on three-dimensional models and virtual total knee arthroplasty
title_full_unstemmed Differences between native and prosthetic knees in terms of cross-sectional morphology of the femoral trochlea: a study based on three-dimensional models and virtual total knee arthroplasty
title_short Differences between native and prosthetic knees in terms of cross-sectional morphology of the femoral trochlea: a study based on three-dimensional models and virtual total knee arthroplasty
title_sort differences between native and prosthetic knees in terms of cross-sectional morphology of the femoral trochlea: a study based on three-dimensional models and virtual total knee arthroplasty
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397712/
https://www.ncbi.nlm.nih.gov/pubmed/28427385
http://dx.doi.org/10.1186/s12891-017-1529-x
work_keys_str_mv AT duzhe differencesbetweennativeandprosthetickneesintermsofcrosssectionalmorphologyofthefemoraltrochleaastudybasedonthreedimensionalmodelsandvirtualtotalkneearthroplasty
AT chenshichang differencesbetweennativeandprosthetickneesintermsofcrosssectionalmorphologyofthefemoraltrochleaastudybasedonthreedimensionalmodelsandvirtualtotalkneearthroplasty
AT yanmengning differencesbetweennativeandprosthetickneesintermsofcrosssectionalmorphologyofthefemoraltrochleaastudybasedonthreedimensionalmodelsandvirtualtotalkneearthroplasty
AT yuebing differencesbetweennativeandprosthetickneesintermsofcrosssectionalmorphologyofthefemoraltrochleaastudybasedonthreedimensionalmodelsandvirtualtotalkneearthroplasty
AT wangyou differencesbetweennativeandprosthetickneesintermsofcrosssectionalmorphologyofthefemoraltrochleaastudybasedonthreedimensionalmodelsandvirtualtotalkneearthroplasty