Cargando…
An investigative framework to facilitate epidemiological thinking during herd problem-solving
Veterinary clinicians and students commonly use diagnostic approaches appropriate for individual cases when conducting herd problem-solving. However, these approaches can be problematic, in part because they make limited use of epidemiological principles and methods, which has clear application duri...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397787/ https://www.ncbi.nlm.nih.gov/pubmed/28435659 http://dx.doi.org/10.1186/s13620-017-0089-6 |
Sumario: | Veterinary clinicians and students commonly use diagnostic approaches appropriate for individual cases when conducting herd problem-solving. However, these approaches can be problematic, in part because they make limited use of epidemiological principles and methods, which has clear application during the investigation of herd problems. In this paper, we provide an overview of diagnostic approaches that are used when investigating individual animal cases, and the challenges faced when these approaches are directly translated from the individual to the herd. Further, we propose an investigative framework to facilitate epidemiological thinking during herd problem-solving. A number of different approaches are used when making a diagnosis on an individual animal, including pattern recognition, hypothetico-deductive reasoning, and the key abnormality method. Methods commonly applied to individuals are often adapted for herd problem-solving: ‘comparison with best practice’ being a herd-level adaptation of pattern recognition, and ‘differential diagnoses’ a herd-level adaptation of hypothetico-deductive reasoning. These approaches can be effective, however, challenges can arise. Herds are complex; a collection of individual cows, but also additional layers relating to environment, management, feeding etc. It is unrealistic to expect seamless translation of diagnostic approaches from the individual to the herd. Comparison with best practice is time-consuming and prioritisation of actions can be problematic, whereas differential diagnoses can lead to ‘pathogen hunting’, particularly in complex cases. Epidemiology is the science of understanding disease in populations. The focus is on the population, underpinned by principles and utilising methods that seek to allow us to generate solid conclusions from apparently uncontrolled situations. In this paper, we argue for the inclusion of epidemiological principles and methods as an additional tool for herd problem-solving, and outline an investigative framework, with examples, to effectively incorporate these principles and methods with other diagnostic approaches during herd problem-solving. Relevant measures of performance are identified, and measures of case frequencies are calculated and compared across time, in space and among animal groupings, to identify patterns, clues and plausible hypotheses, consistent with potential biological processes. With this knowledge, the subsequent investigation (relevant on-farm activities, diagnostic testing and other examinations) can be focused, and actions prioritised (specifically, those actions that are likely to make the greatest difference in addressing the problem if enacted). In our experience, this investigative framework is an effective teaching tool, facilitating epidemiological thinking among students during herd problem-solving. It is a generic and robust process, suited to many herd-based problems. |
---|