Cargando…

Specific phospholipid scramblases are involved in exposure of phosphatidylserine, an “eat-me” signal for phagocytes, on degenerating axons

Axonal degeneration is a key pathological feature of several neurological disorders. Emerging evidence has suggested a pathological connection between axonal degeneration and autophagy, a lysosomal degradation pathway. We recently reported that GSK3B-mediated phosphorylation of MCL1 regulates axonal...

Descripción completa

Detalles Bibliográficos
Autores principales: Wakatsuki, Shuji, Araki, Toshiyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398206/
https://www.ncbi.nlm.nih.gov/pubmed/28451058
http://dx.doi.org/10.1080/19420889.2017.1296615
Descripción
Sumario:Axonal degeneration is a key pathological feature of several neurological disorders. Emerging evidence has suggested a pathological connection between axonal degeneration and autophagy, a lysosomal degradation pathway. We recently reported that GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote axonal degeneration. GSK3B–MCL1 pathway affects ATP production locally in degenerating axons and the exposure of phosphatidylserine (PS), an “eat-me” signal for phagocytes, on degenerating axons, resulting in the failed engulfment of axonal debris in vivo. Here we showed that the PS exposure is accomplished by phospholipid scramblase activity. This finding provides a novel mechanism that local ATP production through autophagy promotes PS exposure on degenerating axons. In addition, it opens new perspectives for the understanding of axonal autophagy to regulate Wallerian degeneration.