Cargando…

Use of Biomedical Ontologies for Integration of Biological Knowledge for Learning and Prediction of Adverse Drug Reactions

Drug-induced toxicity is a major public health concern that leads to patient morbidity and mortality. To address this problem, the Food and Drug Administration is working on the PredicTox initiative, a pilot research program on tyrosine kinase inhibitors, to build mechanistic and predictive models f...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaman, Shadia, Sarntivijai, Sirarat, Abernethy, Darrell R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398297/
https://www.ncbi.nlm.nih.gov/pubmed/28469412
http://dx.doi.org/10.1177/1177625017696075
Descripción
Sumario:Drug-induced toxicity is a major public health concern that leads to patient morbidity and mortality. To address this problem, the Food and Drug Administration is working on the PredicTox initiative, a pilot research program on tyrosine kinase inhibitors, to build mechanistic and predictive models for drug-induced toxicity. This program involves integrating data acquired during preclinical studies and clinical trials within pharmaceutical company development programs that they have agreed to put in the public domain and in publicly available biological, pharmacological, and chemical databases. The integration process is accommodated by biomedical ontologies, a set of standardized vocabularies that define terms and logical relationships between them in each vocabulary. We describe a few programs that have used ontologies to address biomedical questions. The PredicTox effort is leveraging the experience gathered from these early initiatives to develop an infrastructure that allows evaluation of the hypothesis that having a mechanistic understanding underlying adverse drug reactions will improve the capacity to understand drug-induced clinical adverse drug reactions.