Cargando…

Change in iron metabolism in rats after renal ischemia/reperfusion injury

Previous studies have indicated that hepcidin, which can regulate iron efflux by binding to ferroportin-1 (FPN1) and inducing its internalization and degradation, acts as the critical factor in the regulation of iron metabolism. However, it is unknown whether hepcidin is involved in acute renal isch...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Guang-liang, Zhu, Lin, Zhang, Yan-min, Zhang, Qian-nan, Yu, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398610/
https://www.ncbi.nlm.nih.gov/pubmed/28426710
http://dx.doi.org/10.1371/journal.pone.0175945
_version_ 1783230493902241792
author Xie, Guang-liang
Zhu, Lin
Zhang, Yan-min
Zhang, Qian-nan
Yu, Qing
author_facet Xie, Guang-liang
Zhu, Lin
Zhang, Yan-min
Zhang, Qian-nan
Yu, Qing
author_sort Xie, Guang-liang
collection PubMed
description Previous studies have indicated that hepcidin, which can regulate iron efflux by binding to ferroportin-1 (FPN1) and inducing its internalization and degradation, acts as the critical factor in the regulation of iron metabolism. However, it is unknown whether hepcidin is involved in acute renal ischemia/reperfusion injury (IRI). In this study, an IRI rat model was established via right renal excision and blood interruption for 45 min in the left kidney, and iron metabolism indexes were examined to investigate the change in iron metabolism and to analyze the role of hepcidin during IRI. From 1 to 24 h after renal reperfusion, serum creatinine and blood urea nitrogen were found to be time-dependently increased with different degrees of kidney injury. Regular variations in iron metabolism indexes in the blood and kidneys were observed in renal IRI. Renal iron content, serum iron and serum ferritin increased early after reperfusion and then declined. Hepcidin expression in the liver significantly increased early after reperfusion, and its serum concentration increased beginning at 8 h after reperfusion. The splenic iron content decreased significantly in the early stage after reperfusion and then increased time-dependently with increasing reperfusion time, and the hepatic iron content showed a decrease in the early stage after reperfusion. The early decrease of the splenic iron content and hepatic iron content might indicate their contribution to the increase in serum iron in renal IRI. In addition, the duodenal iron content showed time-dependently decreased since 12 h after reperfusion in the IRI groups compared to the control group. Along with the spleen, the duodenum might contribute to the decrease in serum iron in the later stage after reperfusion. The changes in iron metabolism indexes observed in our study demonstrate an iron metabolism disorder in renal IRI, and hepcidin might be involved in maintaining iron homeostasis in renal IRI. These findings might suggest a self-protection mechanism regulating iron homeostasis in IRI and provide a new perspective on iron metabolism in attenuating renal IRI.
format Online
Article
Text
id pubmed-5398610
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-53986102017-05-04 Change in iron metabolism in rats after renal ischemia/reperfusion injury Xie, Guang-liang Zhu, Lin Zhang, Yan-min Zhang, Qian-nan Yu, Qing PLoS One Research Article Previous studies have indicated that hepcidin, which can regulate iron efflux by binding to ferroportin-1 (FPN1) and inducing its internalization and degradation, acts as the critical factor in the regulation of iron metabolism. However, it is unknown whether hepcidin is involved in acute renal ischemia/reperfusion injury (IRI). In this study, an IRI rat model was established via right renal excision and blood interruption for 45 min in the left kidney, and iron metabolism indexes were examined to investigate the change in iron metabolism and to analyze the role of hepcidin during IRI. From 1 to 24 h after renal reperfusion, serum creatinine and blood urea nitrogen were found to be time-dependently increased with different degrees of kidney injury. Regular variations in iron metabolism indexes in the blood and kidneys were observed in renal IRI. Renal iron content, serum iron and serum ferritin increased early after reperfusion and then declined. Hepcidin expression in the liver significantly increased early after reperfusion, and its serum concentration increased beginning at 8 h after reperfusion. The splenic iron content decreased significantly in the early stage after reperfusion and then increased time-dependently with increasing reperfusion time, and the hepatic iron content showed a decrease in the early stage after reperfusion. The early decrease of the splenic iron content and hepatic iron content might indicate their contribution to the increase in serum iron in renal IRI. In addition, the duodenal iron content showed time-dependently decreased since 12 h after reperfusion in the IRI groups compared to the control group. Along with the spleen, the duodenum might contribute to the decrease in serum iron in the later stage after reperfusion. The changes in iron metabolism indexes observed in our study demonstrate an iron metabolism disorder in renal IRI, and hepcidin might be involved in maintaining iron homeostasis in renal IRI. These findings might suggest a self-protection mechanism regulating iron homeostasis in IRI and provide a new perspective on iron metabolism in attenuating renal IRI. Public Library of Science 2017-04-20 /pmc/articles/PMC5398610/ /pubmed/28426710 http://dx.doi.org/10.1371/journal.pone.0175945 Text en © 2017 Xie et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Xie, Guang-liang
Zhu, Lin
Zhang, Yan-min
Zhang, Qian-nan
Yu, Qing
Change in iron metabolism in rats after renal ischemia/reperfusion injury
title Change in iron metabolism in rats after renal ischemia/reperfusion injury
title_full Change in iron metabolism in rats after renal ischemia/reperfusion injury
title_fullStr Change in iron metabolism in rats after renal ischemia/reperfusion injury
title_full_unstemmed Change in iron metabolism in rats after renal ischemia/reperfusion injury
title_short Change in iron metabolism in rats after renal ischemia/reperfusion injury
title_sort change in iron metabolism in rats after renal ischemia/reperfusion injury
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398610/
https://www.ncbi.nlm.nih.gov/pubmed/28426710
http://dx.doi.org/10.1371/journal.pone.0175945
work_keys_str_mv AT xieguangliang changeinironmetabolisminratsafterrenalischemiareperfusioninjury
AT zhulin changeinironmetabolisminratsafterrenalischemiareperfusioninjury
AT zhangyanmin changeinironmetabolisminratsafterrenalischemiareperfusioninjury
AT zhangqiannan changeinironmetabolisminratsafterrenalischemiareperfusioninjury
AT yuqing changeinironmetabolisminratsafterrenalischemiareperfusioninjury