Cargando…
Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF) and are associated with congenital bilateral absence of the vas deferens (CBAVD), which is the major cause of infertility in male patients with CF. However, most Taiwanese patients with CBAVD...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398719/ https://www.ncbi.nlm.nih.gov/pubmed/28384194 http://dx.doi.org/10.1371/journal.pgen.1006715 |
_version_ | 1783230516141490176 |
---|---|
author | Wang, Ya-Yun Lin, Ying-Hung Wu, Yi-No Chen, Yen-Lin Lin, Yung-Chih Cheng, Chiao-Yin Chiang, Han-Sun |
author_facet | Wang, Ya-Yun Lin, Ying-Hung Wu, Yi-No Chen, Yen-Lin Lin, Yung-Chih Cheng, Chiao-Yin Chiang, Han-Sun |
author_sort | Wang, Ya-Yun |
collection | PubMed |
description | Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF) and are associated with congenital bilateral absence of the vas deferens (CBAVD), which is the major cause of infertility in male patients with CF. However, most Taiwanese patients with CBAVD do not carry major CFTR mutations. Some patients have a single copy deletion of the solute carrier family 9 isoform 3 (SLC9A3) gene. SLC9A3 is a Na(+)/H(+) exchanger, and depleted Slc9a3 in male mice causes infertility due to the abnormal dilated lumen of the rete testis and efferent ductules. Furthermore, SLC9A3 interacts with CFTR in the pancreatic duct and functions as a genetic modifier of CF. However, SLC9A3 function and its relation to CFTR expression in the male reproductive tract in vivo remain elusive. In the present study, we found that CFTR expression was dramatically decreased in the epididymis and vas deferens of Slc9a3 knockout mice. Adult Slc9a3(-/-) mice showed not only significantly decreased epididymis and vas deferens weight but also increased testis weight. Furthermore, Slc9a3(-/-) mice developed obstructive azoospermia because of abnormal abundant secretions and calcification in the lumen of the reproductive tract. Ultrastructural analysis of the epithelium in Slc9a3(–/–)epididymis and vas deferens displayed disorganized and reduced number of stereocilia and numerous secretory apparatuses. Our data revealed that interdependence between SLC9A3 and CFTR is critical for maintaining a precise microenvironment in the epithelial cytoarchitecture of the male reproductive tract. The Slc9a3-deficient mice with impaired male excurrent ducts in this study provide proof for our clinical findings that some Taiwanese of CBAVD carry SLC9A3 deletion but without major CFTR mutations. |
format | Online Article Text |
id | pubmed-5398719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53987192017-05-15 Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice Wang, Ya-Yun Lin, Ying-Hung Wu, Yi-No Chen, Yen-Lin Lin, Yung-Chih Cheng, Chiao-Yin Chiang, Han-Sun PLoS Genet Research Article Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF) and are associated with congenital bilateral absence of the vas deferens (CBAVD), which is the major cause of infertility in male patients with CF. However, most Taiwanese patients with CBAVD do not carry major CFTR mutations. Some patients have a single copy deletion of the solute carrier family 9 isoform 3 (SLC9A3) gene. SLC9A3 is a Na(+)/H(+) exchanger, and depleted Slc9a3 in male mice causes infertility due to the abnormal dilated lumen of the rete testis and efferent ductules. Furthermore, SLC9A3 interacts with CFTR in the pancreatic duct and functions as a genetic modifier of CF. However, SLC9A3 function and its relation to CFTR expression in the male reproductive tract in vivo remain elusive. In the present study, we found that CFTR expression was dramatically decreased in the epididymis and vas deferens of Slc9a3 knockout mice. Adult Slc9a3(-/-) mice showed not only significantly decreased epididymis and vas deferens weight but also increased testis weight. Furthermore, Slc9a3(-/-) mice developed obstructive azoospermia because of abnormal abundant secretions and calcification in the lumen of the reproductive tract. Ultrastructural analysis of the epithelium in Slc9a3(–/–)epididymis and vas deferens displayed disorganized and reduced number of stereocilia and numerous secretory apparatuses. Our data revealed that interdependence between SLC9A3 and CFTR is critical for maintaining a precise microenvironment in the epithelial cytoarchitecture of the male reproductive tract. The Slc9a3-deficient mice with impaired male excurrent ducts in this study provide proof for our clinical findings that some Taiwanese of CBAVD carry SLC9A3 deletion but without major CFTR mutations. Public Library of Science 2017-04-06 /pmc/articles/PMC5398719/ /pubmed/28384194 http://dx.doi.org/10.1371/journal.pgen.1006715 Text en © 2017 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wang, Ya-Yun Lin, Ying-Hung Wu, Yi-No Chen, Yen-Lin Lin, Yung-Chih Cheng, Chiao-Yin Chiang, Han-Sun Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice |
title | Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice |
title_full | Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice |
title_fullStr | Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice |
title_full_unstemmed | Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice |
title_short | Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice |
title_sort | loss of slc9a3 decreases cftr protein and causes obstructed azoospermia in mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398719/ https://www.ncbi.nlm.nih.gov/pubmed/28384194 http://dx.doi.org/10.1371/journal.pgen.1006715 |
work_keys_str_mv | AT wangyayun lossofslc9a3decreasescftrproteinandcausesobstructedazoospermiainmice AT linyinghung lossofslc9a3decreasescftrproteinandcausesobstructedazoospermiainmice AT wuyino lossofslc9a3decreasescftrproteinandcausesobstructedazoospermiainmice AT chenyenlin lossofslc9a3decreasescftrproteinandcausesobstructedazoospermiainmice AT linyungchih lossofslc9a3decreasescftrproteinandcausesobstructedazoospermiainmice AT chengchiaoyin lossofslc9a3decreasescftrproteinandcausesobstructedazoospermiainmice AT chianghansun lossofslc9a3decreasescftrproteinandcausesobstructedazoospermiainmice |