Cargando…

A quorum sensing-independent path to stumpy development in Trypanosoma brucei

For persistent infections of the mammalian host, African trypanosomes limit their population size by quorum sensing of the parasite-excreted stumpy induction factor (SIF), which induces development to the tsetse-infective stumpy stage. We found that besides this cell density-dependent mechanism, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zimmermann, Henriette, Subota, Ines, Batram, Christopher, Kramer, Susanne, Janzen, Christian J., Jones, Nicola G., Engstler, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398725/
https://www.ncbi.nlm.nih.gov/pubmed/28394929
http://dx.doi.org/10.1371/journal.ppat.1006324
Descripción
Sumario:For persistent infections of the mammalian host, African trypanosomes limit their population size by quorum sensing of the parasite-excreted stumpy induction factor (SIF), which induces development to the tsetse-infective stumpy stage. We found that besides this cell density-dependent mechanism, there exists a second path to the stumpy stage that is linked to antigenic variation, the main instrument of parasite virulence. The expression of a second variant surface glycoprotein (VSG) leads to transcriptional attenuation of the VSG expression site (ES) and immediate development to tsetse fly infective stumpy parasites. This path is independent of SIF and solely controlled by the transcriptional status of the ES. In pleomorphic trypanosomes varying degrees of ES-attenuation result in phenotypic plasticity. While full ES-attenuation causes irreversible stumpy development, milder attenuation may open a time window for rescuing an unsuccessful antigenic switch, a scenario that so far has not been considered as important for parasite survival.