Cargando…
Traces of business cycles in credit-rating migrations
Using migration data of a rating agency, this paper attempts to quantify the impact of macroeconomic conditions on credit-rating migrations. The migrations are modeled as a coupled Markov chain, where the macroeconomic factors are represented by unobserved tendency variables. In the simplest case, t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398736/ https://www.ncbi.nlm.nih.gov/pubmed/28426758 http://dx.doi.org/10.1371/journal.pone.0175911 |
Sumario: | Using migration data of a rating agency, this paper attempts to quantify the impact of macroeconomic conditions on credit-rating migrations. The migrations are modeled as a coupled Markov chain, where the macroeconomic factors are represented by unobserved tendency variables. In the simplest case, these binary random variables are static and credit-class-specific. A generalization treats tendency variables evolving as a time-homogeneous Markov chain. A more detailed analysis assumes a tendency variable for every combination of a credit class and an industry. The models are tested on a Standard and Poor’s (S&P’s) dataset. Parameters are estimated by the maximum likelihood method. According to the estimates, the investment-grade financial institutions evolve independently of the rest of the economy represented by the data. This might be an evidence of implicit too-big-to-fail bail-out guarantee policies of the regulatory authorities. |
---|