Cargando…
Dynamic compensation, parameter identifiability, and equivariances
A recent paper by Karin et al. introduced a mathematical notion called dynamical compensation (DC) of biological circuits. DC was shown to play an important role in glucose homeostasis as well as other key physiological regulatory mechanisms. Karin et al. went on to provide a sufficient condition to...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398758/ https://www.ncbi.nlm.nih.gov/pubmed/28384175 http://dx.doi.org/10.1371/journal.pcbi.1005447 |
Sumario: | A recent paper by Karin et al. introduced a mathematical notion called dynamical compensation (DC) of biological circuits. DC was shown to play an important role in glucose homeostasis as well as other key physiological regulatory mechanisms. Karin et al. went on to provide a sufficient condition to test whether a given system has the DC property. Here, we show how DC can be formulated in terms of a well-known concept in systems biology, statistics, and control theory—that of parameter structural non-identifiability. Viewing DC as a parameter identification problem enables one to take advantage of powerful theoretical and computational tools to test a system for DC. We obtain as a special case the sufficient criterion discussed by Karin et al. We also draw connections to system equivalence and to the fold-change detection property. |
---|