Cargando…

A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells

Exposure to metabolic disease during fetal development alters cellular differentiation and perturbs metabolic homeostasis, but the underlying molecular regulators of this phenomenon in muscle cells are not completely understood. To address this, we undertook a computational approach to identify coop...

Descripción completa

Detalles Bibliográficos
Autores principales: Mughal, W, Nguyen, L, Pustylnik, S, da Silva Rosa, S C, Piotrowski, S, Chapman, D, Du, M, Alli, N S, Grigull, J, Halayko, A J, Aliani, M, Topham, M K, Epand, R M, Hatch, G M, Pereira, T J, Kereliuk, S, McDermott, J C, Rampitsch, C, Dolinsky, V W, Gordon, J W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399178/
https://www.ncbi.nlm.nih.gov/pubmed/26512955
http://dx.doi.org/10.1038/cddis.2015.306
_version_ 1783230586514571264
author Mughal, W
Nguyen, L
Pustylnik, S
da Silva Rosa, S C
Piotrowski, S
Chapman, D
Du, M
Alli, N S
Grigull, J
Halayko, A J
Aliani, M
Topham, M K
Epand, R M
Hatch, G M
Pereira, T J
Kereliuk, S
McDermott, J C
Rampitsch, C
Dolinsky, V W
Gordon, J W
author_facet Mughal, W
Nguyen, L
Pustylnik, S
da Silva Rosa, S C
Piotrowski, S
Chapman, D
Du, M
Alli, N S
Grigull, J
Halayko, A J
Aliani, M
Topham, M K
Epand, R M
Hatch, G M
Pereira, T J
Kereliuk, S
McDermott, J C
Rampitsch, C
Dolinsky, V W
Gordon, J W
author_sort Mughal, W
collection PubMed
description Exposure to metabolic disease during fetal development alters cellular differentiation and perturbs metabolic homeostasis, but the underlying molecular regulators of this phenomenon in muscle cells are not completely understood. To address this, we undertook a computational approach to identify cooperating partners of the myocyte enhancer factor-2 (MEF2) family of transcription factors, known regulators of muscle differentiation and metabolic function. We demonstrate that MEF2 and the serum response factor (SRF) collaboratively regulate the expression of numerous muscle-specific genes, including microRNA-133a (miR-133a). Using tandem mass spectrometry techniques, we identify a conserved phosphorylation motif within the MEF2 and SRF Mcm1 Agamous Deficiens SRF (MADS)-box that regulates miR-133a expression and mitochondrial function in response to a lipotoxic signal. Furthermore, reconstitution of MEF2 function by expression of a neutralizing mutation in this identified phosphorylation motif restores miR-133a expression and mitochondrial membrane potential during lipotoxicity. Mechanistically, we demonstrate that miR-133a regulates mitochondrial function through translational inhibition of a mitophagy and cell death modulating protein, called Nix. Finally, we show that rodents exposed to gestational diabetes during fetal development display muscle diacylglycerol accumulation, concurrent with insulin resistance, reduced miR-133a, and elevated Nix expression, as young adult rats. Given the diverse roles of miR-133a and Nix in regulating mitochondrial function, and proliferation in certain cancers, dysregulation of this genetic pathway may have broad implications involving insulin resistance, cardiovascular disease, and cancer biology.
format Online
Article
Text
id pubmed-5399178
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53991782017-05-09 A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells Mughal, W Nguyen, L Pustylnik, S da Silva Rosa, S C Piotrowski, S Chapman, D Du, M Alli, N S Grigull, J Halayko, A J Aliani, M Topham, M K Epand, R M Hatch, G M Pereira, T J Kereliuk, S McDermott, J C Rampitsch, C Dolinsky, V W Gordon, J W Cell Death Dis Original Article Exposure to metabolic disease during fetal development alters cellular differentiation and perturbs metabolic homeostasis, but the underlying molecular regulators of this phenomenon in muscle cells are not completely understood. To address this, we undertook a computational approach to identify cooperating partners of the myocyte enhancer factor-2 (MEF2) family of transcription factors, known regulators of muscle differentiation and metabolic function. We demonstrate that MEF2 and the serum response factor (SRF) collaboratively regulate the expression of numerous muscle-specific genes, including microRNA-133a (miR-133a). Using tandem mass spectrometry techniques, we identify a conserved phosphorylation motif within the MEF2 and SRF Mcm1 Agamous Deficiens SRF (MADS)-box that regulates miR-133a expression and mitochondrial function in response to a lipotoxic signal. Furthermore, reconstitution of MEF2 function by expression of a neutralizing mutation in this identified phosphorylation motif restores miR-133a expression and mitochondrial membrane potential during lipotoxicity. Mechanistically, we demonstrate that miR-133a regulates mitochondrial function through translational inhibition of a mitophagy and cell death modulating protein, called Nix. Finally, we show that rodents exposed to gestational diabetes during fetal development display muscle diacylglycerol accumulation, concurrent with insulin resistance, reduced miR-133a, and elevated Nix expression, as young adult rats. Given the diverse roles of miR-133a and Nix in regulating mitochondrial function, and proliferation in certain cancers, dysregulation of this genetic pathway may have broad implications involving insulin resistance, cardiovascular disease, and cancer biology. Nature Publishing Group 2015-10 2015-10-29 /pmc/articles/PMC5399178/ /pubmed/26512955 http://dx.doi.org/10.1038/cddis.2015.306 Text en Copyright © 2015 Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Original Article
Mughal, W
Nguyen, L
Pustylnik, S
da Silva Rosa, S C
Piotrowski, S
Chapman, D
Du, M
Alli, N S
Grigull, J
Halayko, A J
Aliani, M
Topham, M K
Epand, R M
Hatch, G M
Pereira, T J
Kereliuk, S
McDermott, J C
Rampitsch, C
Dolinsky, V W
Gordon, J W
A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells
title A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells
title_full A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells
title_fullStr A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells
title_full_unstemmed A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells
title_short A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells
title_sort conserved mads-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399178/
https://www.ncbi.nlm.nih.gov/pubmed/26512955
http://dx.doi.org/10.1038/cddis.2015.306
work_keys_str_mv AT mughalw aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT nguyenl aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT pustylniks aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT dasilvarosasc aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT piotrowskis aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT chapmand aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT dum aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT allins aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT grigullj aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT halaykoaj aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT alianim aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT tophammk aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT epandrm aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT hatchgm aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT pereiratj aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT kereliuks aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT mcdermottjc aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT rampitschc aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT dolinskyvw aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT gordonjw aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT mughalw conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT nguyenl conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT pustylniks conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT dasilvarosasc conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT piotrowskis conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT chapmand conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT dum conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT allins conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT grigullj conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT halaykoaj conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT alianim conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT tophammk conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT epandrm conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT hatchgm conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT pereiratj conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT kereliuks conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT mcdermottjc conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT rampitschc conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT dolinskyvw conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells
AT gordonjw conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells