Cargando…
A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells
Exposure to metabolic disease during fetal development alters cellular differentiation and perturbs metabolic homeostasis, but the underlying molecular regulators of this phenomenon in muscle cells are not completely understood. To address this, we undertook a computational approach to identify coop...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399178/ https://www.ncbi.nlm.nih.gov/pubmed/26512955 http://dx.doi.org/10.1038/cddis.2015.306 |
_version_ | 1783230586514571264 |
---|---|
author | Mughal, W Nguyen, L Pustylnik, S da Silva Rosa, S C Piotrowski, S Chapman, D Du, M Alli, N S Grigull, J Halayko, A J Aliani, M Topham, M K Epand, R M Hatch, G M Pereira, T J Kereliuk, S McDermott, J C Rampitsch, C Dolinsky, V W Gordon, J W |
author_facet | Mughal, W Nguyen, L Pustylnik, S da Silva Rosa, S C Piotrowski, S Chapman, D Du, M Alli, N S Grigull, J Halayko, A J Aliani, M Topham, M K Epand, R M Hatch, G M Pereira, T J Kereliuk, S McDermott, J C Rampitsch, C Dolinsky, V W Gordon, J W |
author_sort | Mughal, W |
collection | PubMed |
description | Exposure to metabolic disease during fetal development alters cellular differentiation and perturbs metabolic homeostasis, but the underlying molecular regulators of this phenomenon in muscle cells are not completely understood. To address this, we undertook a computational approach to identify cooperating partners of the myocyte enhancer factor-2 (MEF2) family of transcription factors, known regulators of muscle differentiation and metabolic function. We demonstrate that MEF2 and the serum response factor (SRF) collaboratively regulate the expression of numerous muscle-specific genes, including microRNA-133a (miR-133a). Using tandem mass spectrometry techniques, we identify a conserved phosphorylation motif within the MEF2 and SRF Mcm1 Agamous Deficiens SRF (MADS)-box that regulates miR-133a expression and mitochondrial function in response to a lipotoxic signal. Furthermore, reconstitution of MEF2 function by expression of a neutralizing mutation in this identified phosphorylation motif restores miR-133a expression and mitochondrial membrane potential during lipotoxicity. Mechanistically, we demonstrate that miR-133a regulates mitochondrial function through translational inhibition of a mitophagy and cell death modulating protein, called Nix. Finally, we show that rodents exposed to gestational diabetes during fetal development display muscle diacylglycerol accumulation, concurrent with insulin resistance, reduced miR-133a, and elevated Nix expression, as young adult rats. Given the diverse roles of miR-133a and Nix in regulating mitochondrial function, and proliferation in certain cancers, dysregulation of this genetic pathway may have broad implications involving insulin resistance, cardiovascular disease, and cancer biology. |
format | Online Article Text |
id | pubmed-5399178 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-53991782017-05-09 A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells Mughal, W Nguyen, L Pustylnik, S da Silva Rosa, S C Piotrowski, S Chapman, D Du, M Alli, N S Grigull, J Halayko, A J Aliani, M Topham, M K Epand, R M Hatch, G M Pereira, T J Kereliuk, S McDermott, J C Rampitsch, C Dolinsky, V W Gordon, J W Cell Death Dis Original Article Exposure to metabolic disease during fetal development alters cellular differentiation and perturbs metabolic homeostasis, but the underlying molecular regulators of this phenomenon in muscle cells are not completely understood. To address this, we undertook a computational approach to identify cooperating partners of the myocyte enhancer factor-2 (MEF2) family of transcription factors, known regulators of muscle differentiation and metabolic function. We demonstrate that MEF2 and the serum response factor (SRF) collaboratively regulate the expression of numerous muscle-specific genes, including microRNA-133a (miR-133a). Using tandem mass spectrometry techniques, we identify a conserved phosphorylation motif within the MEF2 and SRF Mcm1 Agamous Deficiens SRF (MADS)-box that regulates miR-133a expression and mitochondrial function in response to a lipotoxic signal. Furthermore, reconstitution of MEF2 function by expression of a neutralizing mutation in this identified phosphorylation motif restores miR-133a expression and mitochondrial membrane potential during lipotoxicity. Mechanistically, we demonstrate that miR-133a regulates mitochondrial function through translational inhibition of a mitophagy and cell death modulating protein, called Nix. Finally, we show that rodents exposed to gestational diabetes during fetal development display muscle diacylglycerol accumulation, concurrent with insulin resistance, reduced miR-133a, and elevated Nix expression, as young adult rats. Given the diverse roles of miR-133a and Nix in regulating mitochondrial function, and proliferation in certain cancers, dysregulation of this genetic pathway may have broad implications involving insulin resistance, cardiovascular disease, and cancer biology. Nature Publishing Group 2015-10 2015-10-29 /pmc/articles/PMC5399178/ /pubmed/26512955 http://dx.doi.org/10.1038/cddis.2015.306 Text en Copyright © 2015 Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Original Article Mughal, W Nguyen, L Pustylnik, S da Silva Rosa, S C Piotrowski, S Chapman, D Du, M Alli, N S Grigull, J Halayko, A J Aliani, M Topham, M K Epand, R M Hatch, G M Pereira, T J Kereliuk, S McDermott, J C Rampitsch, C Dolinsky, V W Gordon, J W A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells |
title | A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells |
title_full | A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells |
title_fullStr | A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells |
title_full_unstemmed | A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells |
title_short | A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells |
title_sort | conserved mads-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399178/ https://www.ncbi.nlm.nih.gov/pubmed/26512955 http://dx.doi.org/10.1038/cddis.2015.306 |
work_keys_str_mv | AT mughalw aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT nguyenl aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT pustylniks aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT dasilvarosasc aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT piotrowskis aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT chapmand aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT dum aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT allins aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT grigullj aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT halaykoaj aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT alianim aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT tophammk aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT epandrm aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT hatchgm aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT pereiratj aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT kereliuks aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT mcdermottjc aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT rampitschc aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT dolinskyvw aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT gordonjw aconservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT mughalw conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT nguyenl conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT pustylniks conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT dasilvarosasc conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT piotrowskis conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT chapmand conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT dum conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT allins conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT grigullj conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT halaykoaj conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT alianim conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT tophammk conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT epandrm conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT hatchgm conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT pereiratj conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT kereliuks conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT mcdermottjc conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT rampitschc conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT dolinskyvw conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells AT gordonjw conservedmadsboxphosphorylationmotifregulatesdifferentiationandmitochondrialfunctioninskeletalcardiacandsmoothmusclecells |