Cargando…

Single-molecule electrical contacts on silicon electrodes under ambient conditions

The ultimate goal in molecular electronics is to use individual molecules as the active electronic component of a real-world sturdy device. For this concept to become reality, it will require the field of single-molecule electronics to shift towards the semiconducting platform of the current microel...

Descripción completa

Detalles Bibliográficos
Autores principales: Aragonès, Albert C., Darwish, Nadim, Ciampi, Simone, Sanz, Fausto, Gooding, J. Justin, Díez-Pérez, Ismael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399279/
https://www.ncbi.nlm.nih.gov/pubmed/28406169
http://dx.doi.org/10.1038/ncomms15056
_version_ 1783230607644426240
author Aragonès, Albert C.
Darwish, Nadim
Ciampi, Simone
Sanz, Fausto
Gooding, J. Justin
Díez-Pérez, Ismael
author_facet Aragonès, Albert C.
Darwish, Nadim
Ciampi, Simone
Sanz, Fausto
Gooding, J. Justin
Díez-Pérez, Ismael
author_sort Aragonès, Albert C.
collection PubMed
description The ultimate goal in molecular electronics is to use individual molecules as the active electronic component of a real-world sturdy device. For this concept to become reality, it will require the field of single-molecule electronics to shift towards the semiconducting platform of the current microelectronics industry. Here, we report silicon-based single-molecule contacts that are mechanically and electrically stable under ambient conditions. The single-molecule contacts are prepared on silicon electrodes using the scanning tunnelling microscopy break-junction approach using a top metallic probe. The molecular wires show remarkable current–voltage reproducibility, as compared to an open silicon/nano-gap/metal junction, with current rectification ratios exceeding 4,000 when a low-doped silicon is used. The extension of the single-molecule junction approach to a silicon substrate contributes to the next level of miniaturization of electronic components and it is anticipated it will pave the way to a new class of robust single-molecule circuits.
format Online
Article
Text
id pubmed-5399279
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53992792017-05-12 Single-molecule electrical contacts on silicon electrodes under ambient conditions Aragonès, Albert C. Darwish, Nadim Ciampi, Simone Sanz, Fausto Gooding, J. Justin Díez-Pérez, Ismael Nat Commun Article The ultimate goal in molecular electronics is to use individual molecules as the active electronic component of a real-world sturdy device. For this concept to become reality, it will require the field of single-molecule electronics to shift towards the semiconducting platform of the current microelectronics industry. Here, we report silicon-based single-molecule contacts that are mechanically and electrically stable under ambient conditions. The single-molecule contacts are prepared on silicon electrodes using the scanning tunnelling microscopy break-junction approach using a top metallic probe. The molecular wires show remarkable current–voltage reproducibility, as compared to an open silicon/nano-gap/metal junction, with current rectification ratios exceeding 4,000 when a low-doped silicon is used. The extension of the single-molecule junction approach to a silicon substrate contributes to the next level of miniaturization of electronic components and it is anticipated it will pave the way to a new class of robust single-molecule circuits. Nature Publishing Group 2017-04-13 /pmc/articles/PMC5399279/ /pubmed/28406169 http://dx.doi.org/10.1038/ncomms15056 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Aragonès, Albert C.
Darwish, Nadim
Ciampi, Simone
Sanz, Fausto
Gooding, J. Justin
Díez-Pérez, Ismael
Single-molecule electrical contacts on silicon electrodes under ambient conditions
title Single-molecule electrical contacts on silicon electrodes under ambient conditions
title_full Single-molecule electrical contacts on silicon electrodes under ambient conditions
title_fullStr Single-molecule electrical contacts on silicon electrodes under ambient conditions
title_full_unstemmed Single-molecule electrical contacts on silicon electrodes under ambient conditions
title_short Single-molecule electrical contacts on silicon electrodes under ambient conditions
title_sort single-molecule electrical contacts on silicon electrodes under ambient conditions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399279/
https://www.ncbi.nlm.nih.gov/pubmed/28406169
http://dx.doi.org/10.1038/ncomms15056
work_keys_str_mv AT aragonesalbertc singlemoleculeelectricalcontactsonsiliconelectrodesunderambientconditions
AT darwishnadim singlemoleculeelectricalcontactsonsiliconelectrodesunderambientconditions
AT ciampisimone singlemoleculeelectricalcontactsonsiliconelectrodesunderambientconditions
AT sanzfausto singlemoleculeelectricalcontactsonsiliconelectrodesunderambientconditions
AT goodingjjustin singlemoleculeelectricalcontactsonsiliconelectrodesunderambientconditions
AT diezperezismael singlemoleculeelectricalcontactsonsiliconelectrodesunderambientconditions