Cargando…
Imbalanced target prediction with pattern discovery on clinical data repositories
BACKGROUND: Clinical data repositories (CDR) have great potential to improve outcome prediction and risk modeling. However, most clinical studies require careful study design, dedicated data collection efforts, and sophisticated modeling techniques before a hypothesis can be tested. We aim to bridge...
Autores principales: | Chan, Tak-Ming, Li, Yuxi, Chiau, Choo-Chiap, Zhu, Jane, Jiang, Jie, Huo, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399417/ https://www.ncbi.nlm.nih.gov/pubmed/28427384 http://dx.doi.org/10.1186/s12911-017-0443-3 |
Ejemplares similares
-
A pattern-discovery-based outcome predictive tool integrated with clinical data repository: design and a case study on contrast related acute kidney injury
por: Li, Yuxi, et al.
Publicado: (2022) -
Association Patterns of Ontological Features Signify Electronic Health Records in Liver Cancer
por: Chan, Lawrence W. C., et al.
Publicado: (2017) -
Explanation and prediction of clinical data with imbalanced class distribution based on pattern discovery and disentanglement
por: Zhou, Pei-Yuan, et al.
Publicado: (2021) -
Multitask CapsNet: An Imbalanced Data Deep Learning
Method for Predicting Toxicants
por: Wang, Yiwei, et al.
Publicado: (2021) -
Model annotation and discovery with the Physiome Model Repository
por: Sarwar, Dewan M., et al.
Publicado: (2019)