Cargando…

Fatty acid synthase cooperates with protrudin to facilitate membrane outgrowth of cellular protrusions

Cellular protrusion formation capacity is a key feature of developing neurons and many eukaryotic cells. However, the mechanisms underlying membrane growth in protrusion formation are largely unclear. In this study, photo-reactive unnatural amino acid 3-(3-methyl-3H-diazirin-3-yl)-propamino-carbonyl...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Chuanling, Lu, Jiaqi, Su, Huizhong, Yang, Jing, Zhou, Demin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399442/
https://www.ncbi.nlm.nih.gov/pubmed/28429738
http://dx.doi.org/10.1038/srep46569
Descripción
Sumario:Cellular protrusion formation capacity is a key feature of developing neurons and many eukaryotic cells. However, the mechanisms underlying membrane growth in protrusion formation are largely unclear. In this study, photo-reactive unnatural amino acid 3-(3-methyl-3H-diazirin-3-yl)-propamino-carbonyl-Nε-l-lysine was incorporated by a genetic code expansion strategy into protrudin, a protein localized in acidic endosomes and in the endoplasmic reticulum, that induces cellular protrusion and neurite formation. The modified protrudin was used for covalent trapping of protrudin-interacting proteins in living cells. Fatty acid synthase (FASN), which synthesizes free fatty acids, was identified to transiently interact with protrudin. Further characterization revealed a unique cooperation mechanism in which protrudin cooperates with FASN to facilitate cellular protrusion formation. This work reveals a novel mechanism involved in protrusion formation that is dependent on transient interaction between FASN and protrudin, and establishes a creative strategy to investigate transient protein-protein interactions in mammalian cells.