Cargando…

Electrochemical Capture and Release of CO(2) in Aqueous Electrolytes Using an Organic Semiconductor Electrode

[Image: see text] Developing efficient methods for capture and controlled release of carbon dioxide is crucial to any carbon capture and utilization technology. Herein we present an approach using an organic semiconductor electrode to electrochemically capture dissolved CO(2) in aqueous electrolytes...

Descripción completa

Detalles Bibliográficos
Autores principales: Apaydin, Dogukan H., Gora, Monika, Portenkirchner, Engelbert, Oppelt, Kerstin T., Neugebauer, Helmut, Jakesova, Marie, Głowacki, Eric D., Kunze-Liebhäuser, Julia, Zagorska, Malgorzata, Mieczkowski, Jozef, Sariciftci, Niyazi Serdar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399472/
https://www.ncbi.nlm.nih.gov/pubmed/28378994
http://dx.doi.org/10.1021/acsami.7b01875
_version_ 1783230654959321088
author Apaydin, Dogukan H.
Gora, Monika
Portenkirchner, Engelbert
Oppelt, Kerstin T.
Neugebauer, Helmut
Jakesova, Marie
Głowacki, Eric D.
Kunze-Liebhäuser, Julia
Zagorska, Malgorzata
Mieczkowski, Jozef
Sariciftci, Niyazi Serdar
author_facet Apaydin, Dogukan H.
Gora, Monika
Portenkirchner, Engelbert
Oppelt, Kerstin T.
Neugebauer, Helmut
Jakesova, Marie
Głowacki, Eric D.
Kunze-Liebhäuser, Julia
Zagorska, Malgorzata
Mieczkowski, Jozef
Sariciftci, Niyazi Serdar
author_sort Apaydin, Dogukan H.
collection PubMed
description [Image: see text] Developing efficient methods for capture and controlled release of carbon dioxide is crucial to any carbon capture and utilization technology. Herein we present an approach using an organic semiconductor electrode to electrochemically capture dissolved CO(2) in aqueous electrolytes. The process relies on electrochemical reduction of a thin film of a naphthalene bisimide derivative, 2,7-bis(4-(2-(2-ethylhexyl)thiazol-4-yl)phenyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NBIT). This molecule is specifically tailored to afford one-electron reversible and one-electron quasi-reversible reduction in aqueous conditions while not dissolving or degrading. The reduced NBIT reacts with CO(2) to form a stable semicarbonate salt, which can be subsequently oxidized electrochemically to release CO(2). The semicarbonate structure is confirmed by in situ IR spectroelectrochemistry. This process of capturing and releasing carbon dioxide can be realized in an oxygen-free environment under ambient pressure and temperature, with uptake efficiency for CO(2) capture of ∼2.3 mmol g(–1). This is on par with the best solution-phase amine chemical capture technologies available today.
format Online
Article
Text
id pubmed-5399472
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-53994722017-04-23 Electrochemical Capture and Release of CO(2) in Aqueous Electrolytes Using an Organic Semiconductor Electrode Apaydin, Dogukan H. Gora, Monika Portenkirchner, Engelbert Oppelt, Kerstin T. Neugebauer, Helmut Jakesova, Marie Głowacki, Eric D. Kunze-Liebhäuser, Julia Zagorska, Malgorzata Mieczkowski, Jozef Sariciftci, Niyazi Serdar ACS Appl Mater Interfaces [Image: see text] Developing efficient methods for capture and controlled release of carbon dioxide is crucial to any carbon capture and utilization technology. Herein we present an approach using an organic semiconductor electrode to electrochemically capture dissolved CO(2) in aqueous electrolytes. The process relies on electrochemical reduction of a thin film of a naphthalene bisimide derivative, 2,7-bis(4-(2-(2-ethylhexyl)thiazol-4-yl)phenyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NBIT). This molecule is specifically tailored to afford one-electron reversible and one-electron quasi-reversible reduction in aqueous conditions while not dissolving or degrading. The reduced NBIT reacts with CO(2) to form a stable semicarbonate salt, which can be subsequently oxidized electrochemically to release CO(2). The semicarbonate structure is confirmed by in situ IR spectroelectrochemistry. This process of capturing and releasing carbon dioxide can be realized in an oxygen-free environment under ambient pressure and temperature, with uptake efficiency for CO(2) capture of ∼2.3 mmol g(–1). This is on par with the best solution-phase amine chemical capture technologies available today. American Chemical Society 2017-04-05 2017-04-19 /pmc/articles/PMC5399472/ /pubmed/28378994 http://dx.doi.org/10.1021/acsami.7b01875 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Apaydin, Dogukan H.
Gora, Monika
Portenkirchner, Engelbert
Oppelt, Kerstin T.
Neugebauer, Helmut
Jakesova, Marie
Głowacki, Eric D.
Kunze-Liebhäuser, Julia
Zagorska, Malgorzata
Mieczkowski, Jozef
Sariciftci, Niyazi Serdar
Electrochemical Capture and Release of CO(2) in Aqueous Electrolytes Using an Organic Semiconductor Electrode
title Electrochemical Capture and Release of CO(2) in Aqueous Electrolytes Using an Organic Semiconductor Electrode
title_full Electrochemical Capture and Release of CO(2) in Aqueous Electrolytes Using an Organic Semiconductor Electrode
title_fullStr Electrochemical Capture and Release of CO(2) in Aqueous Electrolytes Using an Organic Semiconductor Electrode
title_full_unstemmed Electrochemical Capture and Release of CO(2) in Aqueous Electrolytes Using an Organic Semiconductor Electrode
title_short Electrochemical Capture and Release of CO(2) in Aqueous Electrolytes Using an Organic Semiconductor Electrode
title_sort electrochemical capture and release of co(2) in aqueous electrolytes using an organic semiconductor electrode
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399472/
https://www.ncbi.nlm.nih.gov/pubmed/28378994
http://dx.doi.org/10.1021/acsami.7b01875
work_keys_str_mv AT apaydindogukanh electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode
AT goramonika electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode
AT portenkirchnerengelbert electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode
AT oppeltkerstint electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode
AT neugebauerhelmut electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode
AT jakesovamarie electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode
AT głowackiericd electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode
AT kunzeliebhauserjulia electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode
AT zagorskamalgorzata electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode
AT mieczkowskijozef electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode
AT sariciftciniyaziserdar electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode