Cargando…
Electrochemical Capture and Release of CO(2) in Aqueous Electrolytes Using an Organic Semiconductor Electrode
[Image: see text] Developing efficient methods for capture and controlled release of carbon dioxide is crucial to any carbon capture and utilization technology. Herein we present an approach using an organic semiconductor electrode to electrochemically capture dissolved CO(2) in aqueous electrolytes...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399472/ https://www.ncbi.nlm.nih.gov/pubmed/28378994 http://dx.doi.org/10.1021/acsami.7b01875 |
_version_ | 1783230654959321088 |
---|---|
author | Apaydin, Dogukan H. Gora, Monika Portenkirchner, Engelbert Oppelt, Kerstin T. Neugebauer, Helmut Jakesova, Marie Głowacki, Eric D. Kunze-Liebhäuser, Julia Zagorska, Malgorzata Mieczkowski, Jozef Sariciftci, Niyazi Serdar |
author_facet | Apaydin, Dogukan H. Gora, Monika Portenkirchner, Engelbert Oppelt, Kerstin T. Neugebauer, Helmut Jakesova, Marie Głowacki, Eric D. Kunze-Liebhäuser, Julia Zagorska, Malgorzata Mieczkowski, Jozef Sariciftci, Niyazi Serdar |
author_sort | Apaydin, Dogukan H. |
collection | PubMed |
description | [Image: see text] Developing efficient methods for capture and controlled release of carbon dioxide is crucial to any carbon capture and utilization technology. Herein we present an approach using an organic semiconductor electrode to electrochemically capture dissolved CO(2) in aqueous electrolytes. The process relies on electrochemical reduction of a thin film of a naphthalene bisimide derivative, 2,7-bis(4-(2-(2-ethylhexyl)thiazol-4-yl)phenyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NBIT). This molecule is specifically tailored to afford one-electron reversible and one-electron quasi-reversible reduction in aqueous conditions while not dissolving or degrading. The reduced NBIT reacts with CO(2) to form a stable semicarbonate salt, which can be subsequently oxidized electrochemically to release CO(2). The semicarbonate structure is confirmed by in situ IR spectroelectrochemistry. This process of capturing and releasing carbon dioxide can be realized in an oxygen-free environment under ambient pressure and temperature, with uptake efficiency for CO(2) capture of ∼2.3 mmol g(–1). This is on par with the best solution-phase amine chemical capture technologies available today. |
format | Online Article Text |
id | pubmed-5399472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-53994722017-04-23 Electrochemical Capture and Release of CO(2) in Aqueous Electrolytes Using an Organic Semiconductor Electrode Apaydin, Dogukan H. Gora, Monika Portenkirchner, Engelbert Oppelt, Kerstin T. Neugebauer, Helmut Jakesova, Marie Głowacki, Eric D. Kunze-Liebhäuser, Julia Zagorska, Malgorzata Mieczkowski, Jozef Sariciftci, Niyazi Serdar ACS Appl Mater Interfaces [Image: see text] Developing efficient methods for capture and controlled release of carbon dioxide is crucial to any carbon capture and utilization technology. Herein we present an approach using an organic semiconductor electrode to electrochemically capture dissolved CO(2) in aqueous electrolytes. The process relies on electrochemical reduction of a thin film of a naphthalene bisimide derivative, 2,7-bis(4-(2-(2-ethylhexyl)thiazol-4-yl)phenyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NBIT). This molecule is specifically tailored to afford one-electron reversible and one-electron quasi-reversible reduction in aqueous conditions while not dissolving or degrading. The reduced NBIT reacts with CO(2) to form a stable semicarbonate salt, which can be subsequently oxidized electrochemically to release CO(2). The semicarbonate structure is confirmed by in situ IR spectroelectrochemistry. This process of capturing and releasing carbon dioxide can be realized in an oxygen-free environment under ambient pressure and temperature, with uptake efficiency for CO(2) capture of ∼2.3 mmol g(–1). This is on par with the best solution-phase amine chemical capture technologies available today. American Chemical Society 2017-04-05 2017-04-19 /pmc/articles/PMC5399472/ /pubmed/28378994 http://dx.doi.org/10.1021/acsami.7b01875 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Apaydin, Dogukan H. Gora, Monika Portenkirchner, Engelbert Oppelt, Kerstin T. Neugebauer, Helmut Jakesova, Marie Głowacki, Eric D. Kunze-Liebhäuser, Julia Zagorska, Malgorzata Mieczkowski, Jozef Sariciftci, Niyazi Serdar Electrochemical Capture and Release of CO(2) in Aqueous Electrolytes Using an Organic Semiconductor Electrode |
title | Electrochemical
Capture and Release of CO(2) in Aqueous Electrolytes Using
an Organic Semiconductor Electrode |
title_full | Electrochemical
Capture and Release of CO(2) in Aqueous Electrolytes Using
an Organic Semiconductor Electrode |
title_fullStr | Electrochemical
Capture and Release of CO(2) in Aqueous Electrolytes Using
an Organic Semiconductor Electrode |
title_full_unstemmed | Electrochemical
Capture and Release of CO(2) in Aqueous Electrolytes Using
an Organic Semiconductor Electrode |
title_short | Electrochemical
Capture and Release of CO(2) in Aqueous Electrolytes Using
an Organic Semiconductor Electrode |
title_sort | electrochemical
capture and release of co(2) in aqueous electrolytes using
an organic semiconductor electrode |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399472/ https://www.ncbi.nlm.nih.gov/pubmed/28378994 http://dx.doi.org/10.1021/acsami.7b01875 |
work_keys_str_mv | AT apaydindogukanh electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode AT goramonika electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode AT portenkirchnerengelbert electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode AT oppeltkerstint electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode AT neugebauerhelmut electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode AT jakesovamarie electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode AT głowackiericd electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode AT kunzeliebhauserjulia electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode AT zagorskamalgorzata electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode AT mieczkowskijozef electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode AT sariciftciniyaziserdar electrochemicalcaptureandreleaseofco2inaqueouselectrolytesusinganorganicsemiconductorelectrode |