Cargando…
Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model
Dominant intermediate Charcot-Marie-Tooth disease type C (DI-CMTC) is a dominantly inherited neuropathy that has been classified primarily based on motor conduction velocity tests but is now known to involve axonal and demyelination features. DI-CMTC is linked to tyrosyl-tRNA synthetase (YARS)-assoc...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399729/ https://www.ncbi.nlm.nih.gov/pubmed/28469666 http://dx.doi.org/10.4103/1673-5374.202920 |
_version_ | 1783230697555623936 |
---|---|
author | Lee, SeoJin Panthi, Sandesh Jo, Hyun Woo Cho, Jaeyoung Kim, Min-Sik Jeong, Na Young Song, In Ok Jung, Junyang Huh, Youngbuhm |
author_facet | Lee, SeoJin Panthi, Sandesh Jo, Hyun Woo Cho, Jaeyoung Kim, Min-Sik Jeong, Na Young Song, In Ok Jung, Junyang Huh, Youngbuhm |
author_sort | Lee, SeoJin |
collection | PubMed |
description | Dominant intermediate Charcot-Marie-Tooth disease type C (DI-CMTC) is a dominantly inherited neuropathy that has been classified primarily based on motor conduction velocity tests but is now known to involve axonal and demyelination features. DI-CMTC is linked to tyrosyl-tRNA synthetase (YARS)-associated neuropathies, which are caused by E196K and G41R missense mutations and a single de novo deletion (153-156delVKQV). It is well-established that these YARS mutations induce neuronal dysfunction, morphological symptoms involving axonal degeneration, and impaired motor performance. The present study is the first to describe a novel mouse model of YARS-mutation-induced neuropathy involving a neuron-specific promoter with a deleted mitochondrial targeting sequence that inhibits the expression of YARS protein in the mitochondria. An adenovirus vector system and in vivo techniques were utilized to express YARS fusion proteins with a Flag-tag in the spinal cord, peripheral axons, and dorsal root ganglia. Following transfection of YARS-expressing viruses, the distributions of wild-type (WT) YARS and E196K mutant proteins were compared in all expressed regions; G41R was not expressed. The proportion of Flag/green fluorescent protein (GFP) double-positive signaling in the E196K mutant-type mice did not significantly differ from that of WT mice in dorsal root ganglion neurons. All adenovirus genes, and even the empty vector without the YARS gene, exhibited GFP-positive signaling in the ventral horn of the spinal cord because GFP in an adenovirus vector is driven by a cytomegalovirus promoter. The present study demonstrated that anatomical differences in tissue can lead to dissimilar expressions of YARS genes. Thus, use of this novel animal model will provide data regarding distributional defects between mutant and WT genes in neurons, the DI-CMTC phenotype, and potential treatment approaches for this disease. |
format | Online Article Text |
id | pubmed-5399729 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-53997292017-05-03 Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model Lee, SeoJin Panthi, Sandesh Jo, Hyun Woo Cho, Jaeyoung Kim, Min-Sik Jeong, Na Young Song, In Ok Jung, Junyang Huh, Youngbuhm Neural Regen Res Research Article Dominant intermediate Charcot-Marie-Tooth disease type C (DI-CMTC) is a dominantly inherited neuropathy that has been classified primarily based on motor conduction velocity tests but is now known to involve axonal and demyelination features. DI-CMTC is linked to tyrosyl-tRNA synthetase (YARS)-associated neuropathies, which are caused by E196K and G41R missense mutations and a single de novo deletion (153-156delVKQV). It is well-established that these YARS mutations induce neuronal dysfunction, morphological symptoms involving axonal degeneration, and impaired motor performance. The present study is the first to describe a novel mouse model of YARS-mutation-induced neuropathy involving a neuron-specific promoter with a deleted mitochondrial targeting sequence that inhibits the expression of YARS protein in the mitochondria. An adenovirus vector system and in vivo techniques were utilized to express YARS fusion proteins with a Flag-tag in the spinal cord, peripheral axons, and dorsal root ganglia. Following transfection of YARS-expressing viruses, the distributions of wild-type (WT) YARS and E196K mutant proteins were compared in all expressed regions; G41R was not expressed. The proportion of Flag/green fluorescent protein (GFP) double-positive signaling in the E196K mutant-type mice did not significantly differ from that of WT mice in dorsal root ganglion neurons. All adenovirus genes, and even the empty vector without the YARS gene, exhibited GFP-positive signaling in the ventral horn of the spinal cord because GFP in an adenovirus vector is driven by a cytomegalovirus promoter. The present study demonstrated that anatomical differences in tissue can lead to dissimilar expressions of YARS genes. Thus, use of this novel animal model will provide data regarding distributional defects between mutant and WT genes in neurons, the DI-CMTC phenotype, and potential treatment approaches for this disease. Medknow Publications & Media Pvt Ltd 2017-03 /pmc/articles/PMC5399729/ /pubmed/28469666 http://dx.doi.org/10.4103/1673-5374.202920 Text en Copyright: © Neural Regeneration Research http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. |
spellingShingle | Research Article Lee, SeoJin Panthi, Sandesh Jo, Hyun Woo Cho, Jaeyoung Kim, Min-Sik Jeong, Na Young Song, In Ok Jung, Junyang Huh, Youngbuhm Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model |
title | Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model |
title_full | Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model |
title_fullStr | Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model |
title_full_unstemmed | Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model |
title_short | Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model |
title_sort | anatomical distributional defects in mutant genes associated with dominant intermediate charcot-marie-tooth disease type c in an adenovirus-mediated mouse model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399729/ https://www.ncbi.nlm.nih.gov/pubmed/28469666 http://dx.doi.org/10.4103/1673-5374.202920 |
work_keys_str_mv | AT leeseojin anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT panthisandesh anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT johyunwoo anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT chojaeyoung anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT kimminsik anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT jeongnayoung anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT songinok anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT jungjunyang anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel AT huhyoungbuhm anatomicaldistributionaldefectsinmutantgenesassociatedwithdominantintermediatecharcotmarietoothdiseasetypecinanadenovirusmediatedmousemodel |