Cargando…

The independence of eye movements in a stomatopod crustacean is task dependent

Stomatopods have an extraordinary visual system, incorporating independent movement of their eyes in all three degrees of rotational freedom. In this work, we demonstrate that in the peacock mantis shrimp, Odontodactylus scyllarus, the level of ocular independence is task dependent. During gaze stab...

Descripción completa

Detalles Bibliográficos
Autores principales: Daly, Ilse M., How, Martin J., Partridge, Julian C., Roberts, Nicholas W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399772/
https://www.ncbi.nlm.nih.gov/pubmed/28356369
http://dx.doi.org/10.1242/jeb.153692
Descripción
Sumario:Stomatopods have an extraordinary visual system, incorporating independent movement of their eyes in all three degrees of rotational freedom. In this work, we demonstrate that in the peacock mantis shrimp, Odontodactylus scyllarus, the level of ocular independence is task dependent. During gaze stabilization in the context of optokinesis, there is weak but significant correlation between the left and right eyes in the yaw degree of rotational freedom, but not in pitch and torsion. When one eye is completely occluded, the uncovered eye does not drive the covered eye during gaze stabilization. However, occluding one eye does significantly affect the uncovered eye, lowering its gaze stabilization performance. There is a lateral asymmetry, with the magnitude of the effect depending on the eye (left or right) combined with the direction of motion of the visual field. In contrast, during a startle saccade, the uncovered eye does drive a covered eye. Such disparate levels of independence between the two eyes suggest that responses to individual visual tasks are likely to follow different neural pathways.