Cargando…
Semiparametric methods for estimation of a nonlinear exposure‐outcome relationship using instrumental variables with application to Mendelian randomization
Mendelian randomization, the use of genetic variants as instrumental variables (IV), can test for and estimate the causal effect of an exposure on an outcome. Most IV methods assume that the function relating the exposure to the expected value of the outcome (the exposure‐outcome relationship) is li...
Autores principales: | Staley, James R., Burgess, Stephen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5400068/ https://www.ncbi.nlm.nih.gov/pubmed/28317167 http://dx.doi.org/10.1002/gepi.22041 |
Ejemplares similares
-
A review of instrumental variable estimators for Mendelian randomization
por: Burgess, Stephen, et al.
Publicado: (2015) -
Lack of Identification in Semiparametric Instrumental Variable Models With Binary Outcomes
por: Burgess, Stephen, et al.
Publicado: (2014) -
Instrumental Variable Analysis with a Nonlinear Exposure–Outcome Relationship
por: Burgess, Stephen, et al.
Publicado: (2014) -
Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators
por: Pierce, Brandon L., et al.
Publicado: (2013) -
Nonlinear time series: semiparametric and nonparametric methods
por: Gao, Jiti
Publicado: (2007)