Cargando…

The SBASE domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines

SBASE (http://www.icgeb.trieste.it/sbase) is an online resource designed to facilitate the detection of domain homologies based on sequence database search. The present release of the SBASE A library of protein domain sequences contains 972 397 protein sequence segments annotated by structure, funct...

Descripción completa

Detalles Bibliográficos
Autores principales: Vlahoviček, Kristian, Kaján, László, Ágoston, Vilmos, Pongor, Sándor
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC540066/
https://www.ncbi.nlm.nih.gov/pubmed/15608182
http://dx.doi.org/10.1093/nar/gki112
_version_ 1782122116132372480
author Vlahoviček, Kristian
Kaján, László
Ágoston, Vilmos
Pongor, Sándor
author_facet Vlahoviček, Kristian
Kaján, László
Ágoston, Vilmos
Pongor, Sándor
author_sort Vlahoviček, Kristian
collection PubMed
description SBASE (http://www.icgeb.trieste.it/sbase) is an online resource designed to facilitate the detection of domain homologies based on sequence database search. The present release of the SBASE A library of protein domain sequences contains 972 397 protein sequence segments annotated by structure, function, ligand-binding or cellular topology, clustered into 8547 domain groups. SBASE B contains 169 916 domain sequences clustered into 2526 less well-characterized groups. Domain prediction is based on an evaluation of database search results in comparison with a ‘similarity network’ of inter-sequence similarity scores, using support vector machines trained on similarity search results of known domains.
format Text
id pubmed-540066
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-5400662005-01-04 The SBASE domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines Vlahoviček, Kristian Kaján, László Ágoston, Vilmos Pongor, Sándor Nucleic Acids Res Articles SBASE (http://www.icgeb.trieste.it/sbase) is an online resource designed to facilitate the detection of domain homologies based on sequence database search. The present release of the SBASE A library of protein domain sequences contains 972 397 protein sequence segments annotated by structure, function, ligand-binding or cellular topology, clustered into 8547 domain groups. SBASE B contains 169 916 domain sequences clustered into 2526 less well-characterized groups. Domain prediction is based on an evaluation of database search results in comparison with a ‘similarity network’ of inter-sequence similarity scores, using support vector machines trained on similarity search results of known domains. Oxford University Press 2005-01-01 2004-12-17 /pmc/articles/PMC540066/ /pubmed/15608182 http://dx.doi.org/10.1093/nar/gki112 Text en Copyright © 2005 Oxford University Press
spellingShingle Articles
Vlahoviček, Kristian
Kaján, László
Ágoston, Vilmos
Pongor, Sándor
The SBASE domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines
title The SBASE domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines
title_full The SBASE domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines
title_fullStr The SBASE domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines
title_full_unstemmed The SBASE domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines
title_short The SBASE domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines
title_sort sbase domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC540066/
https://www.ncbi.nlm.nih.gov/pubmed/15608182
http://dx.doi.org/10.1093/nar/gki112
work_keys_str_mv AT vlahovicekkristian thesbasedomainsequenceresourcerelease12predictionofproteindomainarchitectureusingsupportvectormachines
AT kajanlaszlo thesbasedomainsequenceresourcerelease12predictionofproteindomainarchitectureusingsupportvectormachines
AT agostonvilmos thesbasedomainsequenceresourcerelease12predictionofproteindomainarchitectureusingsupportvectormachines
AT pongorsandor thesbasedomainsequenceresourcerelease12predictionofproteindomainarchitectureusingsupportvectormachines
AT vlahovicekkristian sbasedomainsequenceresourcerelease12predictionofproteindomainarchitectureusingsupportvectormachines
AT kajanlaszlo sbasedomainsequenceresourcerelease12predictionofproteindomainarchitectureusingsupportvectormachines
AT agostonvilmos sbasedomainsequenceresourcerelease12predictionofproteindomainarchitectureusingsupportvectormachines
AT pongorsandor sbasedomainsequenceresourcerelease12predictionofproteindomainarchitectureusingsupportvectormachines