Cargando…
Using Routine Data to Categorize Poor Control Diabetic Patients: An Application of Cluster Analysis Technique
BACKGROUND: Diabetes mellitus is one of the most important causes of morbidity and mortality all over the world. Chronic high blood glucose is the root cause of developing future micro and macro vascular complications. In current study, we analyzed poorly controlled patients’ information by clusteri...
Autores principales: | ABOLHASSANI SHAHREZA, Farid, HAZAR, Narjes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Tehran University of Medical Sciences
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401921/ https://www.ncbi.nlm.nih.gov/pubmed/28451537 |
Ejemplares similares
-
Data from routine meat inspection is a poor indicator of the prevalence of tail lesions in undocked pigs
por: Kongsted, Hanne, et al.
Publicado: (2020) -
Clustering Categorical Data Using Community Detection Techniques
por: Nguyen, Huu Hiep
Publicado: (2017) -
Validation of the Stanford Leisure‐Time Activity Categorical Item (L‐Cat) using armband activity monitor data
por: Ross, K. M., et al.
Publicado: (2018) -
New 5-D Coding System for Categorization of Plastic Surgery Conditions
por: Gupta, Saurabh, et al.
Publicado: (2019) -
Metformin Is Associated with Reduced Tissue Factor Procoagulant Activity in Patients with Poorly Controlled Diabetes
por: Witkowski, Marco, et al.
Publicado: (2020)