Cargando…

Firemaster(®) 550 and its components isopropylated triphenyl phosphate and triphenyl phosphate enhance adipogenesis and transcriptional activity of peroxisome proliferator activated receptor (Pparγ) on the adipocyte protein 2 (aP2) promoter

Firemaster(®) 550 (FM550) is a chemical mixture currently used as an additive flame retardant in commercial products, and is comprised of 2-ethylhexyl-2,3,4,5-tertrabromobenzoate (TBB), bis(2-ethylhexyl) tetrabromophthalate (TBPH), triphenyl phosphate (TPP), and isopropylated triphenyl phosphate (IP...

Descripción completa

Detalles Bibliográficos
Autores principales: Tung, Emily W. Y., Ahmed, Shaimaa, Peshdary, Vian, Atlas, Ella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5402942/
https://www.ncbi.nlm.nih.gov/pubmed/28437481
http://dx.doi.org/10.1371/journal.pone.0175855
Descripción
Sumario:Firemaster(®) 550 (FM550) is a chemical mixture currently used as an additive flame retardant in commercial products, and is comprised of 2-ethylhexyl-2,3,4,5-tertrabromobenzoate (TBB), bis(2-ethylhexyl) tetrabromophthalate (TBPH), triphenyl phosphate (TPP), and isopropylated triphenyl phosphate (IPTP). Animal and in vitro studies suggest that FM550, TPP and IPTP may have adipogenic effects and may exert these effects through PPARγ activation. Using murine 3T3-L1 preadipocytes, we investigated the detailed expression of transcription factors and adipogenic markers in response to FM550 and its components. Further we investigated the mechanism of action of the peroxisome proliferator-activated receptor gamma (PPARγ) on downstream targets of the receptor by focussing on the mature adipocyte marker, adipocyte protein 2 (aP2). In addition, we set to elucidate the components responsible for the adipogenic effects seen in the FM550 mixture. We show that FM550 and its components TPP, IPTP, and TBPH, but not TBB induced lipid accumulation in a dose-dependent manner. Interestingly, despite displaying enhanced lipid accumulation, TBPH did not alter the mRNA or protein expression of terminal differentiation markers. In contrast, FM550, TPP, and IPTP treatment enhanced lipid accumulation, and mRNA and protein expression of terminal differentiation markers. To further delineate the mechanisms of action of FM550 and its components we focussed on aP2 promoter activity. For this purpose we used the enhancer region of the mouse aP2 promoter using a 584-bp reporter construct containing an active PPRE located 5.4 kb away from the transcription start site of aP2. Exposure to FM550, IPTP, and TPP significantly increased PPARγ mediated aP2 enhancer activity. Furthermore, we show that TPP- and IPTP-dependent upregulation of aP2 was significantly inhibited by the selective PPARγ antagonist GW9662. In addition, chromatin immunoprecipitation experiments showed that IPTP and TPP treatment led to the recruitment of PPARγ to the regulatory region of aP2.