Cargando…

2-Methoxyestradiol enhances radiosensitivity in radioresistant melanoma MDA-MB-435R cells by regulating glycolysis via HIF-1α/PDK1 axis

HIF-1α overexpression is associated with radio-resistance of various cancers. A radioresistant human melanoma cell model MDA-MB-435R (435R) was established by us previously. Compared with the parental cells MDA-MB-435 (435S), an elevated level of HIF-1α expression in 435R cells was demonstrated in o...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Hong, Jiang, Huangang, Li, Zheng, Zhuang, Yafei, Liu, Yinyin, Zhou, Shuliang, Xiao, Youde, Xie, Conghua, Zhou, Fuxiang, Zhou, Yunfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5403226/
https://www.ncbi.nlm.nih.gov/pubmed/28339028
http://dx.doi.org/10.3892/ijo.2017.3924
Descripción
Sumario:HIF-1α overexpression is associated with radio-resistance of various cancers. A radioresistant human melanoma cell model MDA-MB-435R (435R) was established by us previously. Compared with the parental cells MDA-MB-435 (435S), an elevated level of HIF-1α expression in 435R cells was demonstrated in our recent experiments. Therefore, in the current study, we sought to determine whether selective HIF-1α inhibitors could radiosensitize the 435R cells to X-ray, and to identify the potential mechanisms. Our data demonstrated that inhibition of HIF-1α with 2-methoxyestradiol (2-MeOE2) significantly enhanced radiosensitivity of 435R cells. 2-MeOE2 increased DNA damage and ratio of apoptosis cells induced by irradiation. Whereas, cell proliferation and the expression of pyruvate dehydrogenase kinase 1 (PDK1) were decreased after 2-MeOE2 treatment. The change of expression of GLUT1, LDHA and the cellular ATP level and extracellular lactate production indicates that 2-MeOE2 suppressed glycolytic state of 435R cells. In addition, the radioresistance, glycolytic state and cell proliferation of 435R cells were also decreased after inhibiting pyruvate dehydrogenase kinase 1 (PDK1) with dichloroacetate (DCA). DCA could also increase DNA damage and ratio of apoptotic cells induced by irradiation. These results also suggest that inhibition of HIF-1α with 2-MeOE2 sensitizes radioresistant melanoma cells 435R to X-ray irradiation through targeting the glycolysis that is regulated by PDK1. Selective inhibitors of HIF-1α and glycolysis are potential drugs to enhance radio sensitivity of melanoma cells.