Cargando…
FFJ-3 inhibits PKM2 protein expression via the PI3K/Akt signaling pathway and activates the mitochondrial apoptosis signaling pathway in human cancer cells
Pyruvate kinase isoenzyme M2 (PKM2) has previously been identified as a tumor biomarker and potential therapeutic target for the treatment of cancer. In the present study, FFJ-3, a structurally modified version of mollugin, an extract of the Traditional Chinese herbal medicine Rubia tinctorum (madde...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5403336/ https://www.ncbi.nlm.nih.gov/pubmed/28454440 http://dx.doi.org/10.3892/ol.2017.5761 |
_version_ | 1783231404065161216 |
---|---|
author | Li, Dengyun Wei, Xiaoli Ma, Mingming Jia, Huina Zhang, Yu Kang, Wenyi Wang, Tianxiao Shi, Xiaoyan |
author_facet | Li, Dengyun Wei, Xiaoli Ma, Mingming Jia, Huina Zhang, Yu Kang, Wenyi Wang, Tianxiao Shi, Xiaoyan |
author_sort | Li, Dengyun |
collection | PubMed |
description | Pyruvate kinase isoenzyme M2 (PKM2) has previously been identified as a tumor biomarker and potential therapeutic target for the treatment of cancer. In the present study, FFJ-3, a structurally modified version of mollugin, an extract of the Traditional Chinese herbal medicine Rubia tinctorum (madder) was used in order to determine the anticancer activity of the compound and investigate the potential mechanisms underlying this effect in human cancer cells. The results of the present study revealed that FFJ-3 inhibited the survival of HepG2 human hepatoma cells, MCF-7 human breast cancer cells and A549 human lung adenocarcinoma cells using the MTT assay. In addition, FFJ-3 arrested cell cycle progression at G(2)/M and G(1) in HepG2 and A549 cells, respectively. Further analyses demonstrated that FFJ-3 attenuated the expression of PKM2 protein via the inhibition of the phosphoinositide 3-kinase (PI3K)/Akt serine/threonine kinase (Akt) signaling pathway. Furthermore, treatment of all three cell types with FFJ-3 significantly increased apoptosis and decreased the mitochondrial membrane potential compared with the untreated control group. In addition, FFJ-3 treatment increased the ratio of B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X and activated the caspase-3 cascade. In conclusion, the inhibition of the PI3K/Akt signaling pathway and activation of the caspase-3 cascade by FFJ-3 were primarily responsible for the inhibition of cell proliferation and induction of apoptosis in MCF-7, HepG2 and A549 cells. The results of the present study suggest a potential therapeutic role for FFJ-3 in the treatment of human cancer. |
format | Online Article Text |
id | pubmed-5403336 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-54033362017-04-27 FFJ-3 inhibits PKM2 protein expression via the PI3K/Akt signaling pathway and activates the mitochondrial apoptosis signaling pathway in human cancer cells Li, Dengyun Wei, Xiaoli Ma, Mingming Jia, Huina Zhang, Yu Kang, Wenyi Wang, Tianxiao Shi, Xiaoyan Oncol Lett Articles Pyruvate kinase isoenzyme M2 (PKM2) has previously been identified as a tumor biomarker and potential therapeutic target for the treatment of cancer. In the present study, FFJ-3, a structurally modified version of mollugin, an extract of the Traditional Chinese herbal medicine Rubia tinctorum (madder) was used in order to determine the anticancer activity of the compound and investigate the potential mechanisms underlying this effect in human cancer cells. The results of the present study revealed that FFJ-3 inhibited the survival of HepG2 human hepatoma cells, MCF-7 human breast cancer cells and A549 human lung adenocarcinoma cells using the MTT assay. In addition, FFJ-3 arrested cell cycle progression at G(2)/M and G(1) in HepG2 and A549 cells, respectively. Further analyses demonstrated that FFJ-3 attenuated the expression of PKM2 protein via the inhibition of the phosphoinositide 3-kinase (PI3K)/Akt serine/threonine kinase (Akt) signaling pathway. Furthermore, treatment of all three cell types with FFJ-3 significantly increased apoptosis and decreased the mitochondrial membrane potential compared with the untreated control group. In addition, FFJ-3 treatment increased the ratio of B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X and activated the caspase-3 cascade. In conclusion, the inhibition of the PI3K/Akt signaling pathway and activation of the caspase-3 cascade by FFJ-3 were primarily responsible for the inhibition of cell proliferation and induction of apoptosis in MCF-7, HepG2 and A549 cells. The results of the present study suggest a potential therapeutic role for FFJ-3 in the treatment of human cancer. D.A. Spandidos 2017-04 2017-02-22 /pmc/articles/PMC5403336/ /pubmed/28454440 http://dx.doi.org/10.3892/ol.2017.5761 Text en Copyright: © Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Li, Dengyun Wei, Xiaoli Ma, Mingming Jia, Huina Zhang, Yu Kang, Wenyi Wang, Tianxiao Shi, Xiaoyan FFJ-3 inhibits PKM2 protein expression via the PI3K/Akt signaling pathway and activates the mitochondrial apoptosis signaling pathway in human cancer cells |
title | FFJ-3 inhibits PKM2 protein expression via the PI3K/Akt signaling pathway and activates the mitochondrial apoptosis signaling pathway in human cancer cells |
title_full | FFJ-3 inhibits PKM2 protein expression via the PI3K/Akt signaling pathway and activates the mitochondrial apoptosis signaling pathway in human cancer cells |
title_fullStr | FFJ-3 inhibits PKM2 protein expression via the PI3K/Akt signaling pathway and activates the mitochondrial apoptosis signaling pathway in human cancer cells |
title_full_unstemmed | FFJ-3 inhibits PKM2 protein expression via the PI3K/Akt signaling pathway and activates the mitochondrial apoptosis signaling pathway in human cancer cells |
title_short | FFJ-3 inhibits PKM2 protein expression via the PI3K/Akt signaling pathway and activates the mitochondrial apoptosis signaling pathway in human cancer cells |
title_sort | ffj-3 inhibits pkm2 protein expression via the pi3k/akt signaling pathway and activates the mitochondrial apoptosis signaling pathway in human cancer cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5403336/ https://www.ncbi.nlm.nih.gov/pubmed/28454440 http://dx.doi.org/10.3892/ol.2017.5761 |
work_keys_str_mv | AT lidengyun ffj3inhibitspkm2proteinexpressionviathepi3kaktsignalingpathwayandactivatesthemitochondrialapoptosissignalingpathwayinhumancancercells AT weixiaoli ffj3inhibitspkm2proteinexpressionviathepi3kaktsignalingpathwayandactivatesthemitochondrialapoptosissignalingpathwayinhumancancercells AT mamingming ffj3inhibitspkm2proteinexpressionviathepi3kaktsignalingpathwayandactivatesthemitochondrialapoptosissignalingpathwayinhumancancercells AT jiahuina ffj3inhibitspkm2proteinexpressionviathepi3kaktsignalingpathwayandactivatesthemitochondrialapoptosissignalingpathwayinhumancancercells AT zhangyu ffj3inhibitspkm2proteinexpressionviathepi3kaktsignalingpathwayandactivatesthemitochondrialapoptosissignalingpathwayinhumancancercells AT kangwenyi ffj3inhibitspkm2proteinexpressionviathepi3kaktsignalingpathwayandactivatesthemitochondrialapoptosissignalingpathwayinhumancancercells AT wangtianxiao ffj3inhibitspkm2proteinexpressionviathepi3kaktsignalingpathwayandactivatesthemitochondrialapoptosissignalingpathwayinhumancancercells AT shixiaoyan ffj3inhibitspkm2proteinexpressionviathepi3kaktsignalingpathwayandactivatesthemitochondrialapoptosissignalingpathwayinhumancancercells |