Cargando…

Personalized therapy tests for the monitoring of chronic lymphocytic leukemia development

There is individual variation in the course of disease development and response to therapy of patients with chronic lymphocytic leukemia (CLL). Novel treatment options for CLL include a new generation of purine analogs, antibodies and inhibitors of specific cell signaling pathways, which typically i...

Descripción completa

Detalles Bibliográficos
Autores principales: Rogalińska, Małgorzata, Góralski, Paweł, Błoński, Jerzy Z., Robak, Paweł, Barciszewski, Jan, Koceva-Chyła, Aneta, Piekarski, Henryk, Robak, Tadeusz, Kilianska, Zofia M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5403444/
https://www.ncbi.nlm.nih.gov/pubmed/28454364
http://dx.doi.org/10.3892/ol.2017.5725
Descripción
Sumario:There is individual variation in the course of disease development and response to therapy of patients with chronic lymphocytic leukemia (CLL). Novel treatment options for CLL include a new generation of purine analogs, antibodies and inhibitors of specific cell signaling pathways, which typically induce apoptosis or necrosis. A prospective analysis of patient blood samples revealed that a combination of four tests allowed the most appropriate and effective type of treatment to be selected prior to drug administration, and for the analysis of leukemic cell sensitivity to anticancer drug(s) during disease development. The comparative analysis of blood from the stable and progressive form of CLL in an individual patient revealed diversity in the response to anticancer agents. CLL peripheral blood mononuclear cells were incubated with cladribine + mafosfamide (CM), fludarabine + mafosfamide, CM + rituximab, rituximab alone (Rit) or kinetin riboside (RK). A combination of cell viability, differential scanning calorimetry (DSC) profiles of nuclear preparations and poly(ADP-ribose) polymerase 1 (PARP-1) protein expression analysis of the leukemic cells was performed to evaluate the anticancer effects of the tested agents during CLL development. The results of the present study indicate that such studies are effective in determining the most appropriate anticancer drug and could monitor disease progression on an individual level. In addition, the results of the current study suggest that CLL progression leads to diversification of the cellular drug response. The most efficient apoptosis inducer for the patient was purine analog RK when the disease was stable, while the CM combination was the most effective agent for the progressive form of disease.