Cargando…

A growth‐ and bioluminescence‐based bioreporter for the in vivo detection of novel biocatalysts

The use of bioreporters in high‐throughput screening for small molecules is generally laborious and/or expensive. The technology can be simplified by coupling the generation of a desired compound to cell survival, causing only positive cells to stay in the pool of generated variants. Here, a dual se...

Descripción completa

Detalles Bibliográficos
Autores principales: van Rossum, Teunke, Muras, Aleksandra, Baur, Marco J.J., Creutzburg, Sjoerd C.A., van der Oost, John, Kengen, Servé W.M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404197/
https://www.ncbi.nlm.nih.gov/pubmed/28393499
http://dx.doi.org/10.1111/1751-7915.12612
Descripción
Sumario:The use of bioreporters in high‐throughput screening for small molecules is generally laborious and/or expensive. The technology can be simplified by coupling the generation of a desired compound to cell survival, causing only positive cells to stay in the pool of generated variants. Here, a dual selection/screening system was developed for the in vivo detection of novel biocatalysts. The sensor part of the system is based on the transcriptional regulator AraC, which controls expression of both a selection reporter (LeuB or KmR; enabling growth) for rapid reduction of the initially large library size and a screening reporter (LuxCDABE; causing bioluminescence) for further quantification of the positive variants. Of four developed systems, the best system was the medium copy system with KmR as selection reporter. As a proof of principle, the system was tested for the selection of cells expressing an l‐arabinose isomerase derived from mesophilic Escherichia coli or thermophilic Geobacillus thermodenitrificans. A more than a millionfold enrichment of cells with l‐arabinose isomerase activity was demonstrated by selection and exclusion of false positives by screening. This dual selection/screening system is an important step towards an improved detection method for small molecules, and thereby for finding novel biocatalysts.