Cargando…
Performance of machine-learning scoring functions in structure-based virtual screening
Classical scoring functions have reached a plateau in their performance in virtual screening and binding affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes have shown great promise in small tailored studies. They have also raised controversy, specif...
Autores principales: | Wójcikowski, Maciej, Ballester, Pedro J., Siedlecki, Pawel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404222/ https://www.ncbi.nlm.nih.gov/pubmed/28440302 http://dx.doi.org/10.1038/srep46710 |
Ejemplares similares
-
Machine‐learning scoring functions to improve structure‐based binding affinity prediction and virtual screening
por: Ain, Qurrat Ul, et al.
Publicado: (2015) -
Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field
por: Wójcikowski, Maciej, et al.
Publicado: (2015) -
Structure-based virtual screening for PDL1 dimerizers: Evaluating generic scoring functions
por: Tran-Nguyen, Viet-Khoa, et al.
Publicado: (2022) -
TB-IECS: an accurate machine learning-based scoring function for virtual screening
por: Zhang, Xujun, et al.
Publicado: (2023) -
Development of a protein–ligand extended connectivity (PLEC) fingerprint and its application for binding affinity predictions
por: Wójcikowski, Maciej, et al.
Publicado: (2019)