Cargando…
A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.)
The origin of the agriculture was one of the turning points in human history, and a central part of this was the evolution of new plant forms, domesticated crops. Seed dispersal and germination are two key traits which have been selected to facilitate cultivation and harvesting of crops. The objecti...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404241/ https://www.ncbi.nlm.nih.gov/pubmed/28487704 http://dx.doi.org/10.3389/fpls.2017.00542 |
_version_ | 1783231558823444480 |
---|---|
author | Hradilová, Iveta Trněný, Oldřich Válková, Markéta Cechová, Monika Janská, Anna Prokešová, Lenka Aamir, Khan Krezdorn, Nicolas Rotter, Björn Winter, Peter Varshney, Rajeev K. Soukup, Aleš Bednář, Petr Hanáček, Pavel Smýkal, Petr |
author_facet | Hradilová, Iveta Trněný, Oldřich Válková, Markéta Cechová, Monika Janská, Anna Prokešová, Lenka Aamir, Khan Krezdorn, Nicolas Rotter, Björn Winter, Peter Varshney, Rajeev K. Soukup, Aleš Bednář, Petr Hanáček, Pavel Smýkal, Petr |
author_sort | Hradilová, Iveta |
collection | PubMed |
description | The origin of the agriculture was one of the turning points in human history, and a central part of this was the evolution of new plant forms, domesticated crops. Seed dispersal and germination are two key traits which have been selected to facilitate cultivation and harvesting of crops. The objective of this study was to analyze anatomical structure of seed coat and pod, identify metabolic compounds associated with water-impermeable seed coat and differentially expressed genes involved in pea seed dormancy and pod dehiscence. Comparative anatomical, metabolomics, and transcriptomic analyses were carried out on wild dormant, dehiscent Pisum elatius (JI64, VIR320) and cultivated, indehiscent Pisum sativum non-dormant (JI92, Cameor) and recombinant inbred lines (RILs). Considerable differences were found in texture of testa surface, length of macrosclereids, and seed coat thickness. Histochemical and biochemical analyses indicated genotype related variation in composition and heterogeneity of seed coat cell walls within macrosclereids. Liquid chromatography–electrospray ionization/mass spectrometry and Laser desorption/ionization–mass spectrometry of separated seed coats revealed significantly higher contents of proanthocyanidins (dimer and trimer of gallocatechin), quercetin, and myricetin rhamnosides and hydroxylated fatty acids in dormant compared to non-dormant genotypes. Bulk Segregant Analysis coupled to high throughput RNA sequencing resulted in identification of 770 and 148 differentially expressed genes between dormant and non-dormant seeds or dehiscent and indehiscent pods, respectively. The expression of 14 selected dormancy-related genes was studied by qRT-PCR. Of these, expression pattern of four genes: porin (MACE-S082), peroxisomal membrane PEX14-like protein (MACE-S108), 4-coumarate CoA ligase (MACE-S131), and UDP-glucosyl transferase (MACE-S139) was in agreement in all four genotypes with Massive analysis of cDNA Ends (MACE) data. In case of pod dehiscence, the analysis of two candidate genes (SHATTERING and SHATTERPROOF) and three out of 20 MACE identified genes (MACE-P004, MACE-P013, MACE-P015) showed down-expression in dorsal and ventral pod suture of indehiscent genotypes. Moreover, MACE-P015, the homolog of peptidoglycan-binding domain or proline-rich extensin-like protein mapped correctly to predicted Dpo1 locus on PsLGIII. This integrated analysis of the seed coat in wild and cultivated pea provides new insight as well as raises new questions associated with domestication and seed dormancy and pod dehiscence. |
format | Online Article Text |
id | pubmed-5404241 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-54042412017-05-09 A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.) Hradilová, Iveta Trněný, Oldřich Válková, Markéta Cechová, Monika Janská, Anna Prokešová, Lenka Aamir, Khan Krezdorn, Nicolas Rotter, Björn Winter, Peter Varshney, Rajeev K. Soukup, Aleš Bednář, Petr Hanáček, Pavel Smýkal, Petr Front Plant Sci Plant Science The origin of the agriculture was one of the turning points in human history, and a central part of this was the evolution of new plant forms, domesticated crops. Seed dispersal and germination are two key traits which have been selected to facilitate cultivation and harvesting of crops. The objective of this study was to analyze anatomical structure of seed coat and pod, identify metabolic compounds associated with water-impermeable seed coat and differentially expressed genes involved in pea seed dormancy and pod dehiscence. Comparative anatomical, metabolomics, and transcriptomic analyses were carried out on wild dormant, dehiscent Pisum elatius (JI64, VIR320) and cultivated, indehiscent Pisum sativum non-dormant (JI92, Cameor) and recombinant inbred lines (RILs). Considerable differences were found in texture of testa surface, length of macrosclereids, and seed coat thickness. Histochemical and biochemical analyses indicated genotype related variation in composition and heterogeneity of seed coat cell walls within macrosclereids. Liquid chromatography–electrospray ionization/mass spectrometry and Laser desorption/ionization–mass spectrometry of separated seed coats revealed significantly higher contents of proanthocyanidins (dimer and trimer of gallocatechin), quercetin, and myricetin rhamnosides and hydroxylated fatty acids in dormant compared to non-dormant genotypes. Bulk Segregant Analysis coupled to high throughput RNA sequencing resulted in identification of 770 and 148 differentially expressed genes between dormant and non-dormant seeds or dehiscent and indehiscent pods, respectively. The expression of 14 selected dormancy-related genes was studied by qRT-PCR. Of these, expression pattern of four genes: porin (MACE-S082), peroxisomal membrane PEX14-like protein (MACE-S108), 4-coumarate CoA ligase (MACE-S131), and UDP-glucosyl transferase (MACE-S139) was in agreement in all four genotypes with Massive analysis of cDNA Ends (MACE) data. In case of pod dehiscence, the analysis of two candidate genes (SHATTERING and SHATTERPROOF) and three out of 20 MACE identified genes (MACE-P004, MACE-P013, MACE-P015) showed down-expression in dorsal and ventral pod suture of indehiscent genotypes. Moreover, MACE-P015, the homolog of peptidoglycan-binding domain or proline-rich extensin-like protein mapped correctly to predicted Dpo1 locus on PsLGIII. This integrated analysis of the seed coat in wild and cultivated pea provides new insight as well as raises new questions associated with domestication and seed dormancy and pod dehiscence. Frontiers Media S.A. 2017-04-25 /pmc/articles/PMC5404241/ /pubmed/28487704 http://dx.doi.org/10.3389/fpls.2017.00542 Text en Copyright © 2017 Hradilová, Trněný, Válková, Cechová, Janská, Prokešová, Aamir, Krezdorn, Rotter, Winter, Varshney, Soukup, Bednář, Hanáček and Smýkal. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Hradilová, Iveta Trněný, Oldřich Válková, Markéta Cechová, Monika Janská, Anna Prokešová, Lenka Aamir, Khan Krezdorn, Nicolas Rotter, Björn Winter, Peter Varshney, Rajeev K. Soukup, Aleš Bednář, Petr Hanáček, Pavel Smýkal, Petr A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.) |
title | A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.) |
title_full | A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.) |
title_fullStr | A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.) |
title_full_unstemmed | A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.) |
title_short | A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.) |
title_sort | combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: pod dehiscence and seed dormancy in pea (pisum sp.) |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404241/ https://www.ncbi.nlm.nih.gov/pubmed/28487704 http://dx.doi.org/10.3389/fpls.2017.00542 |
work_keys_str_mv | AT hradilovaiveta acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT trnenyoldrich acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT valkovamarketa acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT cechovamonika acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT janskaanna acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT prokesovalenka acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT aamirkhan acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT krezdornnicolas acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT rotterbjorn acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT winterpeter acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT varshneyrajeevk acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT soukupales acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT bednarpetr acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT hanacekpavel acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT smykalpetr acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT hradilovaiveta combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT trnenyoldrich combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT valkovamarketa combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT cechovamonika combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT janskaanna combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT prokesovalenka combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT aamirkhan combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT krezdornnicolas combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT rotterbjorn combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT winterpeter combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT varshneyrajeevk combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT soukupales combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT bednarpetr combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT hanacekpavel combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp AT smykalpetr combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp |