Cargando…

A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.)

The origin of the agriculture was one of the turning points in human history, and a central part of this was the evolution of new plant forms, domesticated crops. Seed dispersal and germination are two key traits which have been selected to facilitate cultivation and harvesting of crops. The objecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Hradilová, Iveta, Trněný, Oldřich, Válková, Markéta, Cechová, Monika, Janská, Anna, Prokešová, Lenka, Aamir, Khan, Krezdorn, Nicolas, Rotter, Björn, Winter, Peter, Varshney, Rajeev K., Soukup, Aleš, Bednář, Petr, Hanáček, Pavel, Smýkal, Petr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404241/
https://www.ncbi.nlm.nih.gov/pubmed/28487704
http://dx.doi.org/10.3389/fpls.2017.00542
_version_ 1783231558823444480
author Hradilová, Iveta
Trněný, Oldřich
Válková, Markéta
Cechová, Monika
Janská, Anna
Prokešová, Lenka
Aamir, Khan
Krezdorn, Nicolas
Rotter, Björn
Winter, Peter
Varshney, Rajeev K.
Soukup, Aleš
Bednář, Petr
Hanáček, Pavel
Smýkal, Petr
author_facet Hradilová, Iveta
Trněný, Oldřich
Válková, Markéta
Cechová, Monika
Janská, Anna
Prokešová, Lenka
Aamir, Khan
Krezdorn, Nicolas
Rotter, Björn
Winter, Peter
Varshney, Rajeev K.
Soukup, Aleš
Bednář, Petr
Hanáček, Pavel
Smýkal, Petr
author_sort Hradilová, Iveta
collection PubMed
description The origin of the agriculture was one of the turning points in human history, and a central part of this was the evolution of new plant forms, domesticated crops. Seed dispersal and germination are two key traits which have been selected to facilitate cultivation and harvesting of crops. The objective of this study was to analyze anatomical structure of seed coat and pod, identify metabolic compounds associated with water-impermeable seed coat and differentially expressed genes involved in pea seed dormancy and pod dehiscence. Comparative anatomical, metabolomics, and transcriptomic analyses were carried out on wild dormant, dehiscent Pisum elatius (JI64, VIR320) and cultivated, indehiscent Pisum sativum non-dormant (JI92, Cameor) and recombinant inbred lines (RILs). Considerable differences were found in texture of testa surface, length of macrosclereids, and seed coat thickness. Histochemical and biochemical analyses indicated genotype related variation in composition and heterogeneity of seed coat cell walls within macrosclereids. Liquid chromatography–electrospray ionization/mass spectrometry and Laser desorption/ionization–mass spectrometry of separated seed coats revealed significantly higher contents of proanthocyanidins (dimer and trimer of gallocatechin), quercetin, and myricetin rhamnosides and hydroxylated fatty acids in dormant compared to non-dormant genotypes. Bulk Segregant Analysis coupled to high throughput RNA sequencing resulted in identification of 770 and 148 differentially expressed genes between dormant and non-dormant seeds or dehiscent and indehiscent pods, respectively. The expression of 14 selected dormancy-related genes was studied by qRT-PCR. Of these, expression pattern of four genes: porin (MACE-S082), peroxisomal membrane PEX14-like protein (MACE-S108), 4-coumarate CoA ligase (MACE-S131), and UDP-glucosyl transferase (MACE-S139) was in agreement in all four genotypes with Massive analysis of cDNA Ends (MACE) data. In case of pod dehiscence, the analysis of two candidate genes (SHATTERING and SHATTERPROOF) and three out of 20 MACE identified genes (MACE-P004, MACE-P013, MACE-P015) showed down-expression in dorsal and ventral pod suture of indehiscent genotypes. Moreover, MACE-P015, the homolog of peptidoglycan-binding domain or proline-rich extensin-like protein mapped correctly to predicted Dpo1 locus on PsLGIII. This integrated analysis of the seed coat in wild and cultivated pea provides new insight as well as raises new questions associated with domestication and seed dormancy and pod dehiscence.
format Online
Article
Text
id pubmed-5404241
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-54042412017-05-09 A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.) Hradilová, Iveta Trněný, Oldřich Válková, Markéta Cechová, Monika Janská, Anna Prokešová, Lenka Aamir, Khan Krezdorn, Nicolas Rotter, Björn Winter, Peter Varshney, Rajeev K. Soukup, Aleš Bednář, Petr Hanáček, Pavel Smýkal, Petr Front Plant Sci Plant Science The origin of the agriculture was one of the turning points in human history, and a central part of this was the evolution of new plant forms, domesticated crops. Seed dispersal and germination are two key traits which have been selected to facilitate cultivation and harvesting of crops. The objective of this study was to analyze anatomical structure of seed coat and pod, identify metabolic compounds associated with water-impermeable seed coat and differentially expressed genes involved in pea seed dormancy and pod dehiscence. Comparative anatomical, metabolomics, and transcriptomic analyses were carried out on wild dormant, dehiscent Pisum elatius (JI64, VIR320) and cultivated, indehiscent Pisum sativum non-dormant (JI92, Cameor) and recombinant inbred lines (RILs). Considerable differences were found in texture of testa surface, length of macrosclereids, and seed coat thickness. Histochemical and biochemical analyses indicated genotype related variation in composition and heterogeneity of seed coat cell walls within macrosclereids. Liquid chromatography–electrospray ionization/mass spectrometry and Laser desorption/ionization–mass spectrometry of separated seed coats revealed significantly higher contents of proanthocyanidins (dimer and trimer of gallocatechin), quercetin, and myricetin rhamnosides and hydroxylated fatty acids in dormant compared to non-dormant genotypes. Bulk Segregant Analysis coupled to high throughput RNA sequencing resulted in identification of 770 and 148 differentially expressed genes between dormant and non-dormant seeds or dehiscent and indehiscent pods, respectively. The expression of 14 selected dormancy-related genes was studied by qRT-PCR. Of these, expression pattern of four genes: porin (MACE-S082), peroxisomal membrane PEX14-like protein (MACE-S108), 4-coumarate CoA ligase (MACE-S131), and UDP-glucosyl transferase (MACE-S139) was in agreement in all four genotypes with Massive analysis of cDNA Ends (MACE) data. In case of pod dehiscence, the analysis of two candidate genes (SHATTERING and SHATTERPROOF) and three out of 20 MACE identified genes (MACE-P004, MACE-P013, MACE-P015) showed down-expression in dorsal and ventral pod suture of indehiscent genotypes. Moreover, MACE-P015, the homolog of peptidoglycan-binding domain or proline-rich extensin-like protein mapped correctly to predicted Dpo1 locus on PsLGIII. This integrated analysis of the seed coat in wild and cultivated pea provides new insight as well as raises new questions associated with domestication and seed dormancy and pod dehiscence. Frontiers Media S.A. 2017-04-25 /pmc/articles/PMC5404241/ /pubmed/28487704 http://dx.doi.org/10.3389/fpls.2017.00542 Text en Copyright © 2017 Hradilová, Trněný, Válková, Cechová, Janská, Prokešová, Aamir, Krezdorn, Rotter, Winter, Varshney, Soukup, Bednář, Hanáček and Smýkal. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Hradilová, Iveta
Trněný, Oldřich
Válková, Markéta
Cechová, Monika
Janská, Anna
Prokešová, Lenka
Aamir, Khan
Krezdorn, Nicolas
Rotter, Björn
Winter, Peter
Varshney, Rajeev K.
Soukup, Aleš
Bednář, Petr
Hanáček, Pavel
Smýkal, Petr
A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.)
title A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.)
title_full A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.)
title_fullStr A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.)
title_full_unstemmed A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.)
title_short A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.)
title_sort combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: pod dehiscence and seed dormancy in pea (pisum sp.)
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404241/
https://www.ncbi.nlm.nih.gov/pubmed/28487704
http://dx.doi.org/10.3389/fpls.2017.00542
work_keys_str_mv AT hradilovaiveta acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT trnenyoldrich acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT valkovamarketa acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT cechovamonika acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT janskaanna acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT prokesovalenka acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT aamirkhan acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT krezdornnicolas acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT rotterbjorn acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT winterpeter acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT varshneyrajeevk acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT soukupales acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT bednarpetr acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT hanacekpavel acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT smykalpetr acombinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT hradilovaiveta combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT trnenyoldrich combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT valkovamarketa combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT cechovamonika combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT janskaanna combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT prokesovalenka combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT aamirkhan combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT krezdornnicolas combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT rotterbjorn combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT winterpeter combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT varshneyrajeevk combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT soukupales combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT bednarpetr combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT hanacekpavel combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp
AT smykalpetr combinedcomparativetranscriptomicmetabolomicandanatomicalanalysesoftwokeydomesticationtraitspoddehiscenceandseeddormancyinpeapisumsp