Cargando…
Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach
Machine learning systems have recently received increased attention for their broad applications in several fields. In this study, we show for the first time that histological types of breast tumors can be classified using subtle morphological differences of microenvironmental myoepithelial cell nuc...
Autores principales: | Yamamoto, Yoichiro, Saito, Akira, Tateishi, Ayako, Shimojo, Hisashi, Kanno, Hiroyuki, Tsuchiya, Shinichi, Ito, Ken-ichi, Cosatto, Eric, Graf, Hans Peter, Moraleda, Rodrigo R., Eils, Roland, Grabe, Niels |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404264/ https://www.ncbi.nlm.nih.gov/pubmed/28440283 http://dx.doi.org/10.1038/srep46732 |
Ejemplares similares
-
Quantitative nucleic features are effective for discrimination of intraductal proliferative lesions of the breast
por: Yamada, Masatoshi, et al.
Publicado: (2016) -
A novel method for morphological pleomorphism and heterogeneity quantitative measurement: Named cell feature level co-occurrence matrix
por: Saito, Akira, et al.
Publicado: (2016) -
Coexistence of salivary duct, myoepithelial and epithelial-myoepithelial carcinomas in the parotid gland: a case report and literature review
por: Yanagawa, Naoki, et al.
Publicado: (2021) -
Pathological Diagnosis of Gastric Cancers with a Novel Computerized Analysis System
por: Oikawa, Kosuke, et al.
Publicado: (2017) -
Histopathology and Cytology of Pulmonary Myoepithelial Neoplasms: 2 Cases
por: Ishikawa, Akira, et al.
Publicado: (2022)