Cargando…
Characterization of CYP115 As a Gibberellin 3-Oxidase Indicates That Certain Rhizobia Can Produce Bioactive Gibberellin A(4)
[Image: see text] The gibberellin (GA) phytohormones are produced not only by plants but also by fungi and bacteria. Previous characterization of a cytochrome P450 (CYP)-rich GA biosynthetic operon found in many symbiotic, nitrogen-fixing rhizobia led to the elucidation of bacterial GA biosynthesis...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404427/ https://www.ncbi.nlm.nih.gov/pubmed/28199080 http://dx.doi.org/10.1021/acschembio.6b01038 |
Sumario: | [Image: see text] The gibberellin (GA) phytohormones are produced not only by plants but also by fungi and bacteria. Previous characterization of a cytochrome P450 (CYP)-rich GA biosynthetic operon found in many symbiotic, nitrogen-fixing rhizobia led to the elucidation of bacterial GA biosynthesis and implicated GA(9) as the final product. However, GA(9) does not exhibit hormonal/biological activity and presumably requires further transformation to elicit an effect in the legume host plant. Some rhizobia that contain the GA operon also possess an additional CYP (CYP115), and here we show that this acts as a GA 3-oxidase to produce bioactive GA(4) from GA(9). This is the first GA 3-oxidase identified for rhizobia, and provides a more complete scheme for biosynthesis of bioactive GAs in bacteria. Furthermore, phylogenetic analyses suggest that rhizobia acquired CYP115 independently of the core GA operon, adding further complexity to the horizontal gene transfer of GA biosynthetic enzymes among bacteria. |
---|