Cargando…
Analysis of Serial Isolates of mcr-1-Positive Escherichia coli Reveals a Highly Active ISApl1 Transposon
The emergence of a transferable colistin resistance gene (mcr-1) is of global concern. The insertion sequence ISApl1 is a key component in the mobilization of this gene, but its role remains poorly understood. Six Escherichia coli isolates were cultured from the same patient over the course of 1 mon...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404521/ https://www.ncbi.nlm.nih.gov/pubmed/28223389 http://dx.doi.org/10.1128/AAC.00056-17 |
Sumario: | The emergence of a transferable colistin resistance gene (mcr-1) is of global concern. The insertion sequence ISApl1 is a key component in the mobilization of this gene, but its role remains poorly understood. Six Escherichia coli isolates were cultured from the same patient over the course of 1 month in Germany and the United States after a brief hospitalization in Bahrain for an unconnected illness. Four carried mcr-1 as determined by real-time PCR, but two were negative. Two additional mcr-1-negative E. coli isolates were collected during follow-up surveillance 9 months later. All isolates were analyzed by whole-genome sequencing (WGS). WGS revealed that the six initial isolates were composed of two distinct strains: an initial ST-617 E. coli strain harboring mcr-1 and a second, unrelated, mcr-1-negative ST-32 E. coli strain that emerged 2 weeks after hospitalization. Follow-up swabs taken 9 months later were negative for the ST-617 strain, but the mcr-1-negative ST-32 strain was still present. mcr-1 was associated with a single copy of ISApl1, located on a 64.5-kb IncI2 plasmid that shared >95% homology with other mcr-1 IncI2 plasmids. ISApl1 copy numbers ranged from 2 for the first isolate to 6 for the final isolate, but ISApl1 movement was independent of mcr-1. Some movement was accompanied by gene disruption, including the loss of genes encoding proteins involved in stress responses, arginine catabolism, and l-arabinose utilization. These data represent the first comprehensive analysis of ISApl1 movement in serial clinical isolates and reveal that, under certain conditions, ISApl1 is a highly active IS element whose movement may be detrimental to the host cell. |
---|