Cargando…
Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data
INTRODUCTION: The molecular underpinnings of the dissociation of cognitive performance and neuropathological burden are poorly understood, and there are currently no known genetic or epigenetic determinants of the dissociation. METHODS AND FINDINGS: “Residual cognition” was quantified by regressing...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404753/ https://www.ncbi.nlm.nih.gov/pubmed/28441426 http://dx.doi.org/10.1371/journal.pmed.1002287 |
_version_ | 1783231641064308736 |
---|---|
author | White, Charles C. Yang, Hyun-Sik Yu, Lei Chibnik, Lori B. Dawe, Robert J. Yang, Jingyun Klein, Hans-Ulrich Felsky, Daniel Ramos-Miguel, Alfredo Arfanakis, Konstantinos Honer, William G. Sperling, Reisa A. Schneider, Julie A. Bennett, David A. De Jager, Philip L. |
author_facet | White, Charles C. Yang, Hyun-Sik Yu, Lei Chibnik, Lori B. Dawe, Robert J. Yang, Jingyun Klein, Hans-Ulrich Felsky, Daniel Ramos-Miguel, Alfredo Arfanakis, Konstantinos Honer, William G. Sperling, Reisa A. Schneider, Julie A. Bennett, David A. De Jager, Philip L. |
author_sort | White, Charles C. |
collection | PubMed |
description | INTRODUCTION: The molecular underpinnings of the dissociation of cognitive performance and neuropathological burden are poorly understood, and there are currently no known genetic or epigenetic determinants of the dissociation. METHODS AND FINDINGS: “Residual cognition” was quantified by regressing out the effects of cerebral pathologies and demographic characteristics on global cognitive performance proximate to death. To identify genes influencing residual cognition, we leveraged neuropathological, genetic, epigenetic, and transcriptional data available for deceased participants of the Religious Orders Study (n = 492) and the Rush Memory and Aging Project (n = 487). Given that our sample size was underpowered to detect genome-wide significance, we applied a multistep approach to identify genes influencing residual cognition, based on our prior observation that independent genetic and epigenetic risk factors can converge on the same locus. In the first step (n = 979), we performed a genome-wide association study with a predefined suggestive p < 10(−5), and nine independent loci met this threshold in eight distinct chromosomal regions. Three of the six genes within 100 kb of the lead SNP are expressed in the dorsolateral prefrontal cortex (DLPFC): UNC5C, ENC1, and TMEM106B. In the second step, in the subset of participants with DLPFC DNA methylation data (n = 648), we found that residual cognition was related to differential DNA methylation of UNC5C and ENC1 (false discovery rate < 0.05). In the third step, in the subset of participants with DLPFC RNA sequencing data (n = 469), brain transcription levels of UNC5C and ENC1 were evaluated for their association with residual cognition: RNA levels of both UNC5C (estimated effect = −0.40, 95% CI −0.69 to −0.10, p = 0.0089) and ENC1 (estimated effect = 0.0064, 95% CI 0.0033 to 0.0096, p = 5.7 × 10(−5)) were associated with residual cognition. In secondary analyses, we explored the mechanism of these associations and found that ENC1 may be related to the previously documented effect of depression on cognitive decline, while UNC5C may alter the composition of presynaptic terminals. Of note, the TMEM106B allele identified in the first step as being associated with better residual cognition is in strong linkage disequilibrium with rs1990622(A) (r(2) = 0.66), a previously identified protective allele for TDP-43 proteinopathy. Limitations include the small sample size for the genetic analysis, which was underpowered to detect genome-wide significance, the evaluation being limited to a single cortical region for epigenetic and transcriptomic data, and the use of categorical measures for certain non-amyloid-plaque, non-neurofibrillary-tangle neuropathologies. CONCLUSIONS: Through a multistep analysis of cognitive, neuropathological, genomic, epigenomic, and transcriptomic data, we identified ENC1 and UNC5C as genes with convergent genetic, epigenetic, and transcriptomic evidence supporting a potential role in the dissociation of cognition and neuropathology in an aging population, and we expanded our understanding of the TMEM106B haplotype that is protective against TDP-43 proteinopathy. |
format | Online Article Text |
id | pubmed-5404753 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-54047532017-05-12 Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data White, Charles C. Yang, Hyun-Sik Yu, Lei Chibnik, Lori B. Dawe, Robert J. Yang, Jingyun Klein, Hans-Ulrich Felsky, Daniel Ramos-Miguel, Alfredo Arfanakis, Konstantinos Honer, William G. Sperling, Reisa A. Schneider, Julie A. Bennett, David A. De Jager, Philip L. PLoS Med Research Article INTRODUCTION: The molecular underpinnings of the dissociation of cognitive performance and neuropathological burden are poorly understood, and there are currently no known genetic or epigenetic determinants of the dissociation. METHODS AND FINDINGS: “Residual cognition” was quantified by regressing out the effects of cerebral pathologies and demographic characteristics on global cognitive performance proximate to death. To identify genes influencing residual cognition, we leveraged neuropathological, genetic, epigenetic, and transcriptional data available for deceased participants of the Religious Orders Study (n = 492) and the Rush Memory and Aging Project (n = 487). Given that our sample size was underpowered to detect genome-wide significance, we applied a multistep approach to identify genes influencing residual cognition, based on our prior observation that independent genetic and epigenetic risk factors can converge on the same locus. In the first step (n = 979), we performed a genome-wide association study with a predefined suggestive p < 10(−5), and nine independent loci met this threshold in eight distinct chromosomal regions. Three of the six genes within 100 kb of the lead SNP are expressed in the dorsolateral prefrontal cortex (DLPFC): UNC5C, ENC1, and TMEM106B. In the second step, in the subset of participants with DLPFC DNA methylation data (n = 648), we found that residual cognition was related to differential DNA methylation of UNC5C and ENC1 (false discovery rate < 0.05). In the third step, in the subset of participants with DLPFC RNA sequencing data (n = 469), brain transcription levels of UNC5C and ENC1 were evaluated for their association with residual cognition: RNA levels of both UNC5C (estimated effect = −0.40, 95% CI −0.69 to −0.10, p = 0.0089) and ENC1 (estimated effect = 0.0064, 95% CI 0.0033 to 0.0096, p = 5.7 × 10(−5)) were associated with residual cognition. In secondary analyses, we explored the mechanism of these associations and found that ENC1 may be related to the previously documented effect of depression on cognitive decline, while UNC5C may alter the composition of presynaptic terminals. Of note, the TMEM106B allele identified in the first step as being associated with better residual cognition is in strong linkage disequilibrium with rs1990622(A) (r(2) = 0.66), a previously identified protective allele for TDP-43 proteinopathy. Limitations include the small sample size for the genetic analysis, which was underpowered to detect genome-wide significance, the evaluation being limited to a single cortical region for epigenetic and transcriptomic data, and the use of categorical measures for certain non-amyloid-plaque, non-neurofibrillary-tangle neuropathologies. CONCLUSIONS: Through a multistep analysis of cognitive, neuropathological, genomic, epigenomic, and transcriptomic data, we identified ENC1 and UNC5C as genes with convergent genetic, epigenetic, and transcriptomic evidence supporting a potential role in the dissociation of cognition and neuropathology in an aging population, and we expanded our understanding of the TMEM106B haplotype that is protective against TDP-43 proteinopathy. Public Library of Science 2017-04-25 /pmc/articles/PMC5404753/ /pubmed/28441426 http://dx.doi.org/10.1371/journal.pmed.1002287 Text en © 2017 White et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article White, Charles C. Yang, Hyun-Sik Yu, Lei Chibnik, Lori B. Dawe, Robert J. Yang, Jingyun Klein, Hans-Ulrich Felsky, Daniel Ramos-Miguel, Alfredo Arfanakis, Konstantinos Honer, William G. Sperling, Reisa A. Schneider, Julie A. Bennett, David A. De Jager, Philip L. Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data |
title | Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data |
title_full | Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data |
title_fullStr | Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data |
title_full_unstemmed | Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data |
title_short | Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data |
title_sort | identification of genes associated with dissociation of cognitive performance and neuropathological burden: multistep analysis of genetic, epigenetic, and transcriptional data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404753/ https://www.ncbi.nlm.nih.gov/pubmed/28441426 http://dx.doi.org/10.1371/journal.pmed.1002287 |
work_keys_str_mv | AT whitecharlesc identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT yanghyunsik identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT yulei identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT chibniklorib identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT dawerobertj identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT yangjingyun identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT kleinhansulrich identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT felskydaniel identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT ramosmiguelalfredo identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT arfanakiskonstantinos identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT honerwilliamg identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT sperlingreisaa identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT schneiderjuliea identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT bennettdavida identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata AT dejagerphilipl identificationofgenesassociatedwithdissociationofcognitiveperformanceandneuropathologicalburdenmultistepanalysisofgeneticepigeneticandtranscriptionaldata |