Cargando…

Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example

BACKGROUND: Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, th...

Descripción completa

Detalles Bibliográficos
Autores principales: Gunalan, Kabilar, Chaturvedi, Ashutosh, Howell, Bryan, Duchin, Yuval, Lempka, Scott F., Patriat, Remi, Sapiro, Guillermo, Harel, Noam, McIntyre, Cameron C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404874/
https://www.ncbi.nlm.nih.gov/pubmed/28441410
http://dx.doi.org/10.1371/journal.pone.0176132
Descripción
Sumario:BACKGROUND: Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports. OBJECTIVE: Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM) and predict the response of the hyperdirect pathway to clinical stimulation. METHODS: Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python) enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson’s disease (PD). This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution. RESULTS: Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings. CONCLUSION: Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.