Cargando…

Capillary K(+)-sensing initiates retrograde hyperpolarization to locally increase cerebral blood flow

Blood flow into the brain is dynamically regulated to satisfy the changing metabolic requirements of neurons, but how this is accomplished has remained unclear. Here, we demonstrate a central role for capillary endothelial cells in sensing neural activity and communicating it to upstream arterioles...

Descripción completa

Detalles Bibliográficos
Autores principales: Longden, Thomas A., Dabertrand, Fabrice, Koide, Masayo, Gonzales, Albert L., Tykocki, Nathan R., Brayden, Joseph E., Hill-Eubanks, David, Nelson, Mark T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404963/
https://www.ncbi.nlm.nih.gov/pubmed/28319610
http://dx.doi.org/10.1038/nn.4533
_version_ 1783231680325091328
author Longden, Thomas A.
Dabertrand, Fabrice
Koide, Masayo
Gonzales, Albert L.
Tykocki, Nathan R.
Brayden, Joseph E.
Hill-Eubanks, David
Nelson, Mark T.
author_facet Longden, Thomas A.
Dabertrand, Fabrice
Koide, Masayo
Gonzales, Albert L.
Tykocki, Nathan R.
Brayden, Joseph E.
Hill-Eubanks, David
Nelson, Mark T.
author_sort Longden, Thomas A.
collection PubMed
description Blood flow into the brain is dynamically regulated to satisfy the changing metabolic requirements of neurons, but how this is accomplished has remained unclear. Here, we demonstrate a central role for capillary endothelial cells in sensing neural activity and communicating it to upstream arterioles in the form of an electrical vasodilatory signal. We further demonstrate that this signal is initiated by extracellular potassium (K(+))—a byproduct of neural activity—which activates capillary endothelial cell inward-rectifier K(+) (K(IR)2.1) channels to produce a rapidly propagating retrograde hyperpolarization that causes upstream arteriolar dilation, increasing blood flow into the capillary bed. Our results establish brain capillaries as an active sensory web that converts changes in external K(+) into rapid, ‘inside-out’ electrical signaling to direct blood flow to active brain regions.
format Online
Article
Text
id pubmed-5404963
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-54049632017-09-20 Capillary K(+)-sensing initiates retrograde hyperpolarization to locally increase cerebral blood flow Longden, Thomas A. Dabertrand, Fabrice Koide, Masayo Gonzales, Albert L. Tykocki, Nathan R. Brayden, Joseph E. Hill-Eubanks, David Nelson, Mark T. Nat Neurosci Article Blood flow into the brain is dynamically regulated to satisfy the changing metabolic requirements of neurons, but how this is accomplished has remained unclear. Here, we demonstrate a central role for capillary endothelial cells in sensing neural activity and communicating it to upstream arterioles in the form of an electrical vasodilatory signal. We further demonstrate that this signal is initiated by extracellular potassium (K(+))—a byproduct of neural activity—which activates capillary endothelial cell inward-rectifier K(+) (K(IR)2.1) channels to produce a rapidly propagating retrograde hyperpolarization that causes upstream arteriolar dilation, increasing blood flow into the capillary bed. Our results establish brain capillaries as an active sensory web that converts changes in external K(+) into rapid, ‘inside-out’ electrical signaling to direct blood flow to active brain regions. 2017-03-20 2017-05 /pmc/articles/PMC5404963/ /pubmed/28319610 http://dx.doi.org/10.1038/nn.4533 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Longden, Thomas A.
Dabertrand, Fabrice
Koide, Masayo
Gonzales, Albert L.
Tykocki, Nathan R.
Brayden, Joseph E.
Hill-Eubanks, David
Nelson, Mark T.
Capillary K(+)-sensing initiates retrograde hyperpolarization to locally increase cerebral blood flow
title Capillary K(+)-sensing initiates retrograde hyperpolarization to locally increase cerebral blood flow
title_full Capillary K(+)-sensing initiates retrograde hyperpolarization to locally increase cerebral blood flow
title_fullStr Capillary K(+)-sensing initiates retrograde hyperpolarization to locally increase cerebral blood flow
title_full_unstemmed Capillary K(+)-sensing initiates retrograde hyperpolarization to locally increase cerebral blood flow
title_short Capillary K(+)-sensing initiates retrograde hyperpolarization to locally increase cerebral blood flow
title_sort capillary k(+)-sensing initiates retrograde hyperpolarization to locally increase cerebral blood flow
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404963/
https://www.ncbi.nlm.nih.gov/pubmed/28319610
http://dx.doi.org/10.1038/nn.4533
work_keys_str_mv AT longdenthomasa capillaryksensinginitiatesretrogradehyperpolarizationtolocallyincreasecerebralbloodflow
AT dabertrandfabrice capillaryksensinginitiatesretrogradehyperpolarizationtolocallyincreasecerebralbloodflow
AT koidemasayo capillaryksensinginitiatesretrogradehyperpolarizationtolocallyincreasecerebralbloodflow
AT gonzalesalbertl capillaryksensinginitiatesretrogradehyperpolarizationtolocallyincreasecerebralbloodflow
AT tykockinathanr capillaryksensinginitiatesretrogradehyperpolarizationtolocallyincreasecerebralbloodflow
AT braydenjosephe capillaryksensinginitiatesretrogradehyperpolarizationtolocallyincreasecerebralbloodflow
AT hilleubanksdavid capillaryksensinginitiatesretrogradehyperpolarizationtolocallyincreasecerebralbloodflow
AT nelsonmarkt capillaryksensinginitiatesretrogradehyperpolarizationtolocallyincreasecerebralbloodflow