Cargando…

The EpiQuant Framework for Computing Epidemiological Concordance of Microbial Subtyping Data

A fundamental assumption in the use and interpretation of microbial subtyping results for public health investigations is that isolates that appear to be related based on molecular subtyping data are expected to share commonalities with respect to their origin, history, and distribution. Critically,...

Descripción completa

Detalles Bibliográficos
Autores principales: Hetman, Benjamin M., Mutschall, Steven K., Thomas, James E., Gannon, Victor P. J., Clark, Clifford G., Pollari, Frank, Taboada, Eduardo N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405252/
https://www.ncbi.nlm.nih.gov/pubmed/28202797
http://dx.doi.org/10.1128/JCM.01945-16
_version_ 1783231734615113728
author Hetman, Benjamin M.
Mutschall, Steven K.
Thomas, James E.
Gannon, Victor P. J.
Clark, Clifford G.
Pollari, Frank
Taboada, Eduardo N.
author_facet Hetman, Benjamin M.
Mutschall, Steven K.
Thomas, James E.
Gannon, Victor P. J.
Clark, Clifford G.
Pollari, Frank
Taboada, Eduardo N.
author_sort Hetman, Benjamin M.
collection PubMed
description A fundamental assumption in the use and interpretation of microbial subtyping results for public health investigations is that isolates that appear to be related based on molecular subtyping data are expected to share commonalities with respect to their origin, history, and distribution. Critically, there is currently no approach for systematically assessing the underlying epidemiology of subtyping results. Our aim was to develop a method for directly quantifying the similarity between bacterial isolates using basic sampling metadata and to develop a framework for computing the epidemiological concordance of microbial typing results. We have developed an analytical model that summarizes the similarity of bacterial isolates using basic parameters typically provided in sampling records, using a novel framework (EpiQuant) developed in the R environment for statistical computing. We have applied the EpiQuant framework to a data set comprising 654 isolates of the enteric pathogen Campylobacter jejuni from Canadian surveillance data in order to examine the epidemiological concordance of clusters obtained by using two leading C. jejuni subtyping methods. The EpiQuant framework can be used to directly quantify the similarity of bacterial isolates based on basic sample metadata. These results can then be used to assess the concordance between microbial epidemiological and molecular data, facilitating the objective assessment of subtyping method performance and paving the way for the improved application of molecular subtyping data in investigations of infectious disease.
format Online
Article
Text
id pubmed-5405252
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-54052522017-05-16 The EpiQuant Framework for Computing Epidemiological Concordance of Microbial Subtyping Data Hetman, Benjamin M. Mutschall, Steven K. Thomas, James E. Gannon, Victor P. J. Clark, Clifford G. Pollari, Frank Taboada, Eduardo N. J Clin Microbiol Epidemiology A fundamental assumption in the use and interpretation of microbial subtyping results for public health investigations is that isolates that appear to be related based on molecular subtyping data are expected to share commonalities with respect to their origin, history, and distribution. Critically, there is currently no approach for systematically assessing the underlying epidemiology of subtyping results. Our aim was to develop a method for directly quantifying the similarity between bacterial isolates using basic sampling metadata and to develop a framework for computing the epidemiological concordance of microbial typing results. We have developed an analytical model that summarizes the similarity of bacterial isolates using basic parameters typically provided in sampling records, using a novel framework (EpiQuant) developed in the R environment for statistical computing. We have applied the EpiQuant framework to a data set comprising 654 isolates of the enteric pathogen Campylobacter jejuni from Canadian surveillance data in order to examine the epidemiological concordance of clusters obtained by using two leading C. jejuni subtyping methods. The EpiQuant framework can be used to directly quantify the similarity of bacterial isolates based on basic sample metadata. These results can then be used to assess the concordance between microbial epidemiological and molecular data, facilitating the objective assessment of subtyping method performance and paving the way for the improved application of molecular subtyping data in investigations of infectious disease. American Society for Microbiology 2017-04-25 2017-05 /pmc/articles/PMC5405252/ /pubmed/28202797 http://dx.doi.org/10.1128/JCM.01945-16 Text en © Crown copyright 2017. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) .
spellingShingle Epidemiology
Hetman, Benjamin M.
Mutschall, Steven K.
Thomas, James E.
Gannon, Victor P. J.
Clark, Clifford G.
Pollari, Frank
Taboada, Eduardo N.
The EpiQuant Framework for Computing Epidemiological Concordance of Microbial Subtyping Data
title The EpiQuant Framework for Computing Epidemiological Concordance of Microbial Subtyping Data
title_full The EpiQuant Framework for Computing Epidemiological Concordance of Microbial Subtyping Data
title_fullStr The EpiQuant Framework for Computing Epidemiological Concordance of Microbial Subtyping Data
title_full_unstemmed The EpiQuant Framework for Computing Epidemiological Concordance of Microbial Subtyping Data
title_short The EpiQuant Framework for Computing Epidemiological Concordance of Microbial Subtyping Data
title_sort epiquant framework for computing epidemiological concordance of microbial subtyping data
topic Epidemiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405252/
https://www.ncbi.nlm.nih.gov/pubmed/28202797
http://dx.doi.org/10.1128/JCM.01945-16
work_keys_str_mv AT hetmanbenjaminm theepiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata
AT mutschallstevenk theepiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata
AT thomasjamese theepiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata
AT gannonvictorpj theepiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata
AT clarkcliffordg theepiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata
AT pollarifrank theepiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata
AT taboadaeduardon theepiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata
AT hetmanbenjaminm epiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata
AT mutschallstevenk epiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata
AT thomasjamese epiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata
AT gannonvictorpj epiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata
AT clarkcliffordg epiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata
AT pollarifrank epiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata
AT taboadaeduardon epiquantframeworkforcomputingepidemiologicalconcordanceofmicrobialsubtypingdata