Cargando…

Antigenotoxic properties of Paliurus spina-christi Mill fruits and their active compounds

BACKGROUND: Paliurus spina-christi Mill. (PS) fruits are widely used for different medical purposes in Turkey. Like in many medicinal herbs the studies concerning their activity, the activities of PS are also not well clarified. The aim of this study is to evaluate the antigenotoxicity of the compou...

Descripción completa

Detalles Bibliográficos
Autores principales: Zor, Murat, Aydin, Sevtap, Güner, Nadide Deniz, Başaran, Nurşen, Başaran, Arif Ahmet
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405477/
https://www.ncbi.nlm.nih.gov/pubmed/28446228
http://dx.doi.org/10.1186/s12906-017-1732-1
Descripción
Sumario:BACKGROUND: Paliurus spina-christi Mill. (PS) fruits are widely used for different medical purposes in Turkey. Like in many medicinal herbs the studies concerning their activity, the activities of PS are also not well clarified. The aim of this study is to evaluate the antigenotoxicity of the compounds isolated and identified from the extracts of PS fruits. METHODS: The active compounds were separated, isolated, and determined by chromatographic methods and their structural elucidation was performed by Nuclear Magnetic Resonance (NMR) methods. The compounds were obtained from either ethyl acetate (EA) or n-butanol extracts. The cytotoxicities of the compounds using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the antigenotoxic activities of the compounds using the alkaline single cell gel electrophoresis techniques (comet assay) were evaluated in Chinese hamster lung fibroblast (V79) cell lines. RESULTS: The isolated major compounds were identified as (+/−) catechins and gallocatechin from EA fraction and rutin from n-butanol fraction of PS fruits. Their chemical structures were identified by (1)H-NMR, (13)C-NMR, HMBC, and HMQC techniques. Half-maximal inhibitory concentration of catechins, gallocatechin, and rutin were found to be 734 μg/mL, 220 μg/mL, and 1004 μg/mL, respectively. The methanolic extract of PS (1-100 μg/mL) alone did not induce DNA single-strand breaks while catechins (1-100 μg/mL), gallocatechin (1-50 μg/mL), and rutin (1-50 μg/mL) significantly reduced H(2)O(2)-induced DNA damage. CONCLUSION: It has been suggested that PS fruits and their compounds catechins, gallocatechin and rutin may have beneficial effects in oxidative DNA damage. It seems that PS fruits may be used in protection of the disorders related to DNA damage.