Cargando…
Depression Disorder Classification of fMRI Data Using Sparse Low-Rank Functional Brain Network and Graph-Based Features
Study of functional brain network (FBN) based on functional magnetic resonance imaging (fMRI) has proved successful in depression disorder classification. One popular approach to construct FBN is Pearson correlation. However, it only captures pairwise relationship between brain regions, while it ign...
Autores principales: | Wang, Xin, Ren, Yanshuang, Zhang, Wensheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405576/ https://www.ncbi.nlm.nih.gov/pubmed/28487746 http://dx.doi.org/10.1155/2017/3609821 |
Ejemplares similares
-
Low-Rank Plus Sparse Decomposition of fMRI Data With Application to Alzheimer's Disease
por: Tu, Wei, et al.
Publicado: (2022) -
Brain State Decoding Based on fMRI Using Semisupervised Sparse Representation Classifications
por: Zhang, Jing, et al.
Publicado: (2018) -
Sparse network-based models for patient classification using fMRI
por: Rosa, Maria J., et al.
Publicado: (2015) -
Subspace-constrained approaches to low-rank fMRI acceleration
por: Mason, Harry T., et al.
Publicado: (2021) -
Phase fMRI Reveals More Sparseness and Balance of Rest Brain Functional Connectivity Than Magnitude fMRI
por: Chen, Zikuan, et al.
Publicado: (2019)