Cargando…
SuRVoS: Super-Region Volume Segmentation workbench
Segmentation of biological volumes is a crucial step needed to fully analyse their scientific content. Not having access to convenient tools with which to segment or annotate the data means many biological volumes remain under-utilised. Automatic segmentation of biological volumes is still a very ch...
Autores principales: | Luengo, Imanol, Darrow, Michele C., Spink, Matthew C., Sun, Ying, Dai, Wei, He, Cynthia Y., Chiu, Wah, Pridmore, Tony, Ashton, Alun W., Duke, Elizabeth M.H., Basham, Mark, French, Andrew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405849/ https://www.ncbi.nlm.nih.gov/pubmed/28246039 http://dx.doi.org/10.1016/j.jsb.2017.02.007 |
Ejemplares similares
-
Volume Segmentation and Analysis of Biological Materials Using SuRVoS (Super-region Volume Segmentation) Workbench
por: Darrow, Michele C., et al.
Publicado: (2017) -
SuRVoS 2: Accelerating Annotation and Segmentation for Large Volumetric Bioimage Workflows Across Modalities and Scales
por: Pennington, Avery, et al.
Publicado: (2022) -
Data Analysis WorkbeNch (DAWN)
por: Basham, Mark, et al.
Publicado: (2015) -
A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram
por: Bellos, Dimitrios, et al.
Publicado: (2019) -
Temporal refinement of 3D CNN semantic segmentations on 4D time-series of undersampled tomograms using hidden Markov models
por: Bellos, Dimitrios, et al.
Publicado: (2021)