Cargando…
Neural networks subtract and conquer
Two theoretical studies reveal how networks of neurons may behave during reward-based learning.
Autor principal: | Hennequin, Guillaume |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406203/ https://www.ncbi.nlm.nih.gov/pubmed/28443814 http://dx.doi.org/10.7554/eLife.26157 |
Ejemplares similares
-
The geometry of robustness in spiking neural networks
por: Calaim, Nuno, et al.
Publicado: (2022) -
Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks
por: Miconi, Thomas
Publicado: (2017) -
Inferring multi-scale neural mechanisms with brain network modelling
por: Schirner, Michael, et al.
Publicado: (2018) -
Principles for coding associative memories in a compact neural network
por: Pritz, Christian, et al.
Publicado: (2023) -
ProteInfer, deep neural networks for protein functional inference
por: Sanderson, Theo, et al.
Publicado: (2023)