Cargando…
A new bound for the spectral radius of nonnegative tensors
By estimating the ratio of the smallest component and the largest component of a Perron vector, we provide a new bound for the spectral radius of a nonnegative tensor. And it is proved that the proposed result improves the bound in (Li and Ng in Numer. Math. 130(2):315-335, 2015).
Autores principales: | Li, Suhua, Li, Chaoqian, Li, Yaotang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406454/ https://www.ncbi.nlm.nih.gov/pubmed/28503057 http://dx.doi.org/10.1186/s13660-017-1362-7 |
Ejemplares similares
-
Bounds for the Z-spectral radius of nonnegative tensors
por: He, Jun, et al.
Publicado: (2016) -
Bounds for the M-spectral radius of a fourth-order partially symmetric tensor
por: Li, Suhua, et al.
Publicado: (2018) -
Some new sharp bounds for the spectral radius of a nonnegative matrix and its application
por: He, Jun, et al.
Publicado: (2017) -
An upper bound for the Z-spectral radius of adjacency tensors
por: Wu, Zhi-Yong, et al.
Publicado: (2018) -
A new S-type upper bound for the largest singular value of nonnegative rectangular tensors
por: Zhao, Jianxing, et al.
Publicado: (2017)