Cargando…
Transforming Growth Factor-beta 1 Involved in the Pathogenesis of Endometriosis through Regulating Expression of Vascular Endothelial Growth Factor under Hypoxia
BACKGROUND: Endometriosis (EMs) is a common gynecological disorder characterized by endometrial-like tissue outside the uterus. Hypoxia induces the expression of many important downstream genes to regulate the implantation, survival, and maintenance of ectopic endometriotic lesions. Transforming gro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407042/ https://www.ncbi.nlm.nih.gov/pubmed/28397725 http://dx.doi.org/10.4103/0366-6999.204112 |
Sumario: | BACKGROUND: Endometriosis (EMs) is a common gynecological disorder characterized by endometrial-like tissue outside the uterus. Hypoxia induces the expression of many important downstream genes to regulate the implantation, survival, and maintenance of ectopic endometriotic lesions. Transforming growth factor-beta 1 (TGF-β1) plays a major role in the etiology of EMs. We aimed to determine whether TGF-β1 affects EMs development and progression and its related mechanisms in hypoxic conditions. METHODS: Endometrial tissue was obtained from women with or without EMs undergoing surgery from October, 2015 to October, 2016. Endometrial cells were cultured and then exposed to hypoxia and TGF-β1 or TGF-β1 inhibitors. The messenger RNA (mRNA) and protein expression levels of TGF-β1, vascular endothelial growth factor (VEGF), and hypoxia-inducible factor-1α (HIF-1α) were measured. A Dual-Luciferase Reporter Assay was used to examine the effect of TGF-β1 and hypoxia on a VEGF promoter construct. Student's t-test was performed for comparison among groups (one-sided or two-sided) and a value of P < 0.05 was considered statistically significant. RESULTS: TGF-β1, VEGF, HIF-1α mRNA, and protein expression were significantly higher in EMs tissue than that in normal endometrial tissue (t = 2.16, P = 0.042). EMs primary cultured cells exposed to hypoxia expressed 43.8% higher VEGF mRNA and protein (t = 6.84, P = 0.023). VEGF mRNA levels increased 12.5% in response to TGF-β, whereas the combined treatment of hypoxia/TGF-β1 resulted in a much higher production (87.5% increases) of VEGF. The luciferase activity of the VEGF promoter construct was increased in the presence of either TGF-β1 (2.6-fold, t = 6.08, P = 0.032) or hypoxia (11.2-fold, t = 32.70, P < 0.001), whereas the simultaneous presence of both stimuli resulted in a significant cooperative effect (18.5-fold, t = 33.50, P < 0.001). CONCLUSIONS: The data support the hypothesis that TGF-β1 is involved in the pathogenesis of EMs through regulating VEGF expression. An additive effect of TGF-β1 and hypoxia is taking place at the transcriptional level. |
---|